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Moon Polyominoes

convex rows and columns
comparable rows and columns

Lengths of rows from top to bottom form a unimodal sequence.
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Chains in 01-fillings

ne-chain: A set of 1-cells {(i1, j1), (i2, j2), . . . , (ik , jk)} with
i1 < · · · < ik , j1 < · · · < jk such that the smallest rectangle containing
them is a subset of the polyomino.
ne(M) = the length of the largest ne-chain in the filling M.
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Not an ne-chain be-
cause the rectangle is
not part of the poly-
omino



Chains in 01-fillings

se-chain: A set of 1-cells {(i1, j1), (i2, j2), . . . , (ik , jk)} with
i1 < · · · < ik , j1 > · · · > jk such that the smallest rectangle containing
them is a subset of the polyomino.
se(M) = the length of the largest se-chain in the filling M.
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ne(M) = 3
se(M) = 2



Connections to other objects
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21 3 4 5 6 7 8 9 10 11

permutations and words
graphs
set partitions, linked partitions, matchings
crossings and nestings of edges in the picture
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Restriction on columns: Exactly one 1 per column

a. M1 b. M2 c. M3 d. M4

Gi (x , y) :=
∑

M∈F(Mi )

xne(M)y se(M)

G1(x , y) = 40x3y3+238(x3y2+x2y3)+4(x3y+xy3)+348x2y2+2(x2y+xy2)

G2(x , y) = G3(x , y) = G4(x , y) = G1(x , y)
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Conjectures for moon polyominoes

Conjecture
For a moon polyominoM, if

G (x , y) =
∑

M∈F(M)

xne(M)y se(M)

then
G (x , y) = G (y , x).

Conjecture

IfM′ is obtained by permuting the rows and/or columns ofM, then∑
M∈F(M′)

xne(M)y se(M) =
∑

M∈F(M)

xne(M)y se(M).
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Previous work

Chen, Deng, Du, Stanley, Yan (2007) - set partitions

Backelin, West , Xin (2007) + Krattenthaler (2006) + de Mier (2006)
- Ferrers shapes

Jonsson (2007) + Jonsson and Welker (2007) - stack polyominoes

Rubey (2011) - moon polyominoes for ne-chains

Poznanović and Yan (2014) - almost moon polyominoes for ne-chains
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Almost-moon: one exception to the convexity rule

r →

c

↓

G1(x , y) = (15x5y3 + 13x3y5) + 56x4y4 + (80x5y2 + 82x2y5) + (1180x4y3 + 1178x3y4)

+5(x5y + xy5) + (1210x4y2 + 1212x2y4) + 5370x3y3 + 10(x4y + xy4)

+(1477x3y2 + 1473x2y3) + 64x2y2.

G2(x , y) = (8x5y3 + 15x3y5) + 48x4y4 + (83x5y2 + 77x2y5) + (1129x4y3 + 1174x3y4)

+(9x5y + 8xy5) + (1273x4y2 + 1227x2y4) + 5434x3y3 + (6x4y + 7xy4)

+(1415x3y2 + 1467x2y3) + 60x2y2.
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The idea of applying local changes to change the
shape doesn’t work for our conjecture.



Another idea: Hecke insertion

word w ←→ pair of tableaux (P(w),Q(w)) of same shape

(Buch, Kresch, Shimozono, Tamvakis, Alexander Yong, 2008)

P(w) is an increasing tableau: across rows and down columns,
possibly repeated entries
Q(w) is a set-valued tableau: multiple entries per cell, increasing
across rows and down columns

For w = 32412143:

1

2

3

2

4

3
P(w) =

1

2
4, 6

3
5, 8

7
Q(w) =
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What’s the connection?

lis(w) = length of the longest increasing subsequence of w
lds(w) = length of the longest decreasing subsequence of w

Theorem (Thomas, Yong, 2011)

For a word w , let P(w) be the Hecke insertion tableau of w . Then
lis(w) = # columns of P(w)

lds(w) = # rows of P(w).

For w = 32412143:

1
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3
P(w) =

1

2
4, 6

3
5, 8

7
Q(w) =

(Clemson) Polyominoes February 29, 2020 12 / 29



What’s the connection?

lis(w) = length of the longest increasing subsequence of w
lds(w) = length of the longest decreasing subsequence of w

Theorem (Thomas, Yong, 2011)

For a word w , let P(w) be the Hecke insertion tableau of w . Then
lis(w) = # columns of P(w)

lds(w) = # rows of P(w).

For w = 32412143:

1

2

3

2

4

3
P(w) =

1

2
4, 6

3
5, 8

7
Q(w) =

(Clemson) Polyominoes February 29, 2020 12 / 29



What’s the connection?

lis(w) = length of the longest increasing subsequence of w
lds(w) = length of the longest decreasing subsequence of w

Theorem (Thomas, Yong, 2011)

For a word w , let P(w) be the Hecke insertion tableau of w . Then
lis(w) = # columns of P(w)

lds(w) = # rows of P(w).

For w = 32412143:

1

2

3

2

4

3
P(w) =

1

2
4, 6

3
5, 8

7
Q(w) =

(Clemson) Polyominoes February 29, 2020 12 / 29



Hecke insertion: to construct P

To Hecke insert an integer x into a tableau Y :
x is inserted in the first row R ; if an output integer y is produced,
then it’s inserted in the next row, etc.
If x is larger than or equal to all entries in R , then there are 2
possibilities:

If adding x as a new box to the first row results in an increasing
tableau, do that and stop.
Otherwise, stop.

Otherwise, x is strictly smaller than some entry in the first row. Let y
be the smallest integer in R that is strictly larger than x .

If replacing y with x results in an increasing tableau, then replace y
with x and insert y into the next row.
If replacing y with x does not result in an increasing tableau, then
insert y into the next row and do not change R.
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Hecke insertion: to construct P(w) and Q(w)

1

3

5

6

2

4

7

4 6 1

3

5

6

2

4

7←− c

4 6 1

3

5

6

2

4

7

4

6←− c

5

Y Z = Y
H←− 2 Z = Y

H←− 5

c is at the bottom of the column of Z containing the rightmost box of
the row in which the algorithm stops.

P(w) = (· · · ((∅ H←− w1)
H←− w2) · · ·

H←− wn)

Q(w) is built by inserting k in the box c that gets recorded when wk

is inserted.
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Growth diagrams (Patrias, Pylyavskyy 2018)

The Hecke growth diagram of the word 213312.

∅ ∅ ∅ ∅ ∅ ∅

∅
X

∅ 1 1 1 1

∅ 1 11 11

X

11 11

∅ 1 11 21 21 21
X X

X

X

∅

1

21

221

1

2

2

Local rules are applied to grow the diagram from bottom left to top
right: corners labeled by partitions, some horizontal edges by integers

P(w) is on the right boundary
Q(w) is on the top boundary
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P(213312) =
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1 3, 4

2, 5 6
Q(213312) =



K-jeu de taquin: jdtC (T )

(Thomas, Yong, 2009)
T is an increasing skew tableau
C = set of inner corners of T (on the upper left side)
In step k : if k is directly next to a •, swap k and •

•
1

•
2

3

2

3

Swap • and 1 Swap • and 2 Swap • and 3 jdtC (T )
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K -Knuth equivalence

Definition
Two words are said to be K -Knuth equivalent if one can be obtained from
the other via a finite series of applications of the following K -Knuth
relations:

xzy ≡ zxy (x < y < z)

yxz ≡ yzx (x < y < z)

x ≡ xx

xyx ≡ yxy .

Words that have the same Hecke insertion tableau P are K -Knuth
equivalent.
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Properties linking all this

Recall
lis(w) = length of the longest increasing subsequence of w
lds(w) = length of the longest decreasing subsequence of w

Theorem (Thomas, Yong, ’09)

If w1 ≡ w2 then lis(w1) = lis(w2) and lds(w1) = lds(w2).

Theorem (Buch, Samuel, ’16)

Let [a, b] be an integer interval. Let w1 ≡ w2. For i = 1, 2, let wi |[a,b] be
the word obtained from wi by deleting all integers not contained in the
interval [a, b]. Then w1|[a,b] ≡ w2|[a,b].
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Properties linking all this

For an increasing tableau T , row(T ) is the reading word of T , obtained by
reading the entries of T from left to right along each row, starting from
the bottom row and moving upward.

1

2

3

2

4

3

T =

row(T ) = 324123

Theorem (Gaetz, Mastrianni, Patrias, Peck, Robichaux, Schwein, Tam, ’16)

w ≡ row(P(w))

For example,

P(32412143) = T =⇒ 32412143 ≡ 324123
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Theorem (Buch, Samuel, ’16)

Let T and T ′ be increasing tableaux. Then row(T ) ≡ row(T ′) if and only
if T and T ′ are K -jeu de taquin equivalent.

Theorem (Chen, Guo, Pang, ’15)

Let w be a word of positive integers, and k be the maximal element
appearing in w . Let w ′ be the word obtained from w by deleting the
elements equal to k . Then P(w ′) is obtained from P(w) by deleting the
squares occupied with k .
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What we can prove

Theorem
IfM andM′ are stack polyominos with same row lengths then

GM′(x , y) = GM(x , y).
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GM(x , y) =
∑

M∈F(M)

xne(M)y se(M)
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Approach: Bijection between fillings of very similar shapes

Theorem
LetM be a stack polyomino and letM′ be obtained by moving the
bottom row ofM up. Then GM′(x , y) = GM(x , y).

r →

R1

R

R2

r ′ →

R ′
1

R ′

R ′
2
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The bijection

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

R1

R

R2

r →

(Clemson) Polyominoes February 29, 2020 23 / 29

Everything outside of
R stays the same.
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Empty rows and
columns in R stay
empty.
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Let w be the word
from R.
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w = 236126415
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Let (P,Q) be the
tableaux correspond-
ing to w .
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Let w ′ correspond to
(P ′,Q).
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Fill in the rectangle
R ′ in M′ by w ′.



The resulting filling ofM′
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R ′
1

R ′

R ′
2
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ne and se are preserved

w and w ′ have Hecke insertion tableaux of same shape, so
lis(w ′) = lis(w) and lds(w ′) = lds(w).
The fillings in R1 and R ′

1 have the same recording set valued tableau.

R1

R
α

w1

R ′
1

R ′
α

w ′
1
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ne and se are preserved

r

γ

w2

δ

β

R

R2

r ′

γ′

w ′
2

δ′

β

R ′

R ′
2

w\1 ≡ row(P)\1 = row(P/1) ≡ row(P ′/m) = row(P ′)\m ≡ w ′\m
γ + w2 + δ ≡ γ′ + w ′

2 + δ′

w2 ≡ w ′
2

w2β ≡ w ′
2β so lis(w2β) = lis(w ′

2β) and lds(w2β) = lds(w ′
2β)
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Remarks

Moving an arbitrary row up in the same way doesn’t work.
This construction doesn’t preserve (ne, se) for non-stack polyominoes
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The conjecture for general moon polyominoes is still open!



Maximal crossings and nestings in linked partitions

(Chen, Guo, Pang, ’15)
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Reflect the first tableau about the x-axis
Apply the ’move bottom row up’ rule several times
This produces a filling of the same initial shape with (ne, se) reversed
This is a different bijection from the one described above
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This is a different bijection from the one described above
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This is a different bijection from the one described above
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Maximal crossings and nestings in linked partitions
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Apply the ’move bottom row up’ rule several times
This produces a filling of the same initial shape with (ne, se) reversed

This is a different bijection from the one described above
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Maximal crossings and nestings in linked partitions

(Chen, Guo, Pang, ’15)
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This is a different bijection from the one described above
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Thank you.
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