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Computational Complexity Theory |

Poorly understood issue: Why are do some decision problems
have fast algorithms and others seem to need costly search?

Multiplication is easy:

90912135295978188784406583026004374858926083103
28358720428512168960411528640933367824950788367
956756806141 x 814385925911004526572780912628442
93358778990021676278832009141724293243601330041
16702003240828777970252499
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Computational Complexity Theory |

Poorly understood issue: Why are do some decision problems
have fast algorithms and others seem to need costly search?

Multiplication is easy:

90912135295978188784406583026004374858926083103
28358720428512168960411528640933367824950788367
956756806141 x 814385925911004526572780912628442
93358778990021676278832009141724293243601330041
16702003240828777970252499

Factoring seems hard. RSA $30,000 challenge:

74037563479561712828046796097429573142593188889
23128908493623263897276503402826627689199641962
51178439958943305021275853701189680982867331732
73108930900552505116877063299072396380786710086
096962537934650563796359

Solved in 2012.
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Computational Complexity Theory Il

Complexity has long connections of combinatorics, but mainly
graph theory and optimization. We'd like to propose a paradigm
for algebraic combinatorics to connect to complexity.
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Computational Complexity Theory Il

Complexity has long connections of combinatorics, but mainly
graph theory and optimization. We'd like to propose a paradigm
for algebraic combinatorics to connect to complexity.

“. | now give a brief summary of complexity theory:

NP: LP (3x > 0, Ax=b?)

@ coNP: Primes

@ P: LP and Primes!

°

NP-complete: Graph coloring

Famous theoretical computer science problems relevant to us:
o PLNP
o NP < coNP
o NP coNP =P
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Polynomials

In algebraic combinatorics and combinatorial representation theory
we often study:

F, = Z CooX™ Z wt(s) € Zlxt, ..., xn)
X

seS

Example 1: o =X = F, =5, (Schur), cy) = Ky« = Kostka
coeff.

Example 2: o = G = (V,E) = F, =X (Stanley’'s chromatic
symmetric polynomial), ¢y, = #proper colorings of G with
o;-many colors i

Example 3: o =w € Soo = F, = &,, (Schubert polynomial).
More later.
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The decision problem we care about: Nonvanishing

Nonvanishing: What is the complexity of deciding ¢y, # 0 as
measured in the length of the input (&, <) assuming arithmetic
takes constant time?

@ In general undecidable: Godel incompleteness '31, Turing's
halting problem '36.

@ Our cases of interest have combinatorial positivity:
J rule for cyo € Z>9 = Nonvanishing(F,) € NP.
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The decision problem we care about: Nonvanishing

Nonvanishing: What is the complexity of deciding ¢y, # 0 as
measured in the length of the input (&, <) assuming arithmetic
takes constant time?

@ In general undecidable: Godel incompleteness '31, Turing's
halting problem '36.

@ Our cases of interest have combinatorial positivity:
J rule for cyo € Z>9 = Nonvanishing(F,) € NP.

Warning: Standard combinatorics might not be manifestly in NP. J

Ex. Does this SSYT certify Kostka coeff. Kj . # 0 where
A = (1019°,10190) and u = (0%, 4,3,2,1,2,1,0°%,2,...)?
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This is a complexity rationale for Gelfand-Tsetlin polytopes.
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Newton polytopes

Evidently, nonvanishing concerns the Newton polytope,

Newton(F,) = conv{x : ¢y 7 0} C R".

Definition: (Monical-Tokcan-Y.) F, has saturated Newton polytope
(S.N.P.) if B € Newton(F,) & cpo #0

@ Many polynomials in algebraic comb. have this property.

@ Application: A. Woo-Y. solves a complexity problem of
D. Grigoriev-G. Koshevoy.

@ Further work: subsets of {A. Fink, J. Huh, R. Liu,
J. Matherne, K. Mészdros, A. St. Dizier}.

@ Numerous open problems remain. For example:

Fact: (MTY) A, = [Ti<jcjcn(Xi —x)% is SN.P. &= n<4.
Conjecture: (MTY) Fix k, 3n such that AX is not S.N.P.
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Complexity and the S.N.P. property

Observation 1: S.N.P. = nonvanishing(F,) is equivalent to
checking membership of a lattice point in Newton(F,).

Observation 1': S.N.P. 4+ “efficient” halfspace description of
Newton(F,) = nonvanishing(F,) € coNP.

.. in many cases nonvanishing(F,) € NP N coNP. J
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Nonvanishing and NP

Example 1’: sy has S.N.P. Newton(s,) = P, (the
permutahedron). Nonvanishing(sy) € P by dominance order
(Rado's theorem).

Example 2’: x¢ does not have S.N.P..

coloring € NP-complete = Nonvanishing(x¢) € NP-complete.

.. nonvanishing hits the extremes of NP.
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Nonvanishing and NP

Example 1’: sy has S.N.P. Newton(s,) = P, (the
permutahedron). Nonvanishing(sy) € P by dominance order
(Rado's theorem).

Example 2’: x¢ does not have S.N.P..

coloring € NP-complete = Nonvanishing(x¢) € NP-complete.
.. nonvanishing hits the extremes of NP.

Question: What about the nonextremes?

@ Many problems suspected of being NP-intermediate: e.g.,
graph isomorphism, factorization

@ Ladner's theorem: P # NP = NP-intermediate # ()

@ Problems in NP N coNP are suspects for NP-intermediate since

coNP N NP-complete # ) = NP = coNP! |

@ This is why factorization is not expected to be NP-complete.
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Application of algebraic combinatorics to TCS?

Conjecture 1: [Stanley '95] If G is claw-free (i.e., it contains no
induced K3 subgraph), then X¢ is Schur positive.

Conjecture 2: [C. Monical '18] If x is Schur positive, then it is
SNP.

Conjecture 1+42: If G is claw-free then x¢ is SNP.
Theorem: (Holyer '81) Coloring of claw-free G is NP-complete.

Corollary: nonvanishing(Xclaw-freec) € NP-complete.

Proposition: (Adve-Robichaux-Y. '18) Conjecture 1+2 and a
halfspace description of Newton(Xcjawfreeg) =— NP = coNP

Suggests a new complexity-theoretic rationale for the study of x¢.
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An algebraic combinatorics paradigm for complexity

In many cases of algebraic combinatorics, {F,} has combinatorial
positivity and SNP. If one also has an efficient halfspace description
of Newton(F,), then nonvanishing(F,) € NP N coNP.

Three plausible outcomes of such a study:

(I) Unknown: it is an open problem to find additional problems
that are in NP N coNP that are not known to be in P.

(I1) P: Give an algorithm. It will likely illuminate some special
structure, of independent combinatorial interest.

-complete: (conjectura implies ;coNP with “=".
(1) NP pl (conj lly) implies NP

Your favorite polynomial family to think about this way?

My favorite is Schubert polynomials. Initially Adve, Robichaux
and | got to outcome (I), but then achieved outcome (I1). J
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Schubert polynomials

B acts on GL,/B with finitely many orbits, the Schubert cells,
whose closures X,,, w € S,, are the Schubert varieties.

Lascoux and Schiitzenberger's (1982) main idea in type A (after
Bernstein-Gelfand-Gelfand):
e Pick 6,, = xl”*lxg*2 -+ Xp_1 as an especially nice
representative of the class of a point
o Apply Newton'’s divided difference operator
f—fsi

)]
Xi — Xj+1

0;f =

to recursively define all other &, using weak Bruhat order.

This starts the theory of Schubert polynomials.
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Complexity results

There are many combinatorial rules that establish that cy . € Z>o.

However, none of these prove nonvanishing(&,,) € P since they
involve exponential search.

Theorem A: (Adve-Robichaux-Y. '18) cy,w is #P-complete. J

.. no poly. time algorithm to compute ¢, exists unless P = NP.

Counting is hard, nonvanishing is easy:

Theorem B: (Adve-Robichaux-Y. '18) nonvanishing(S,,) € PJ

Analogy: Computing the permanent of a 0, 1-matrix is
#P-complete but nonzeroness is easy (Edmonds-Karp matching
algorithm).
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A tableau rule for nonvanishing

Fillings of the Rothe diagram of 31524:

1]1] 1]1] 1]1]
1 1 1
I I I
11]1] 11[1] 11]1]
1 1 1
! ! !
Theorem C: (Adve-Robichaux-Y. '18)
Caw #0 & Tab(w, ) # 0. J
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@ The Schubitope Sp was introduced by Monical-Tokcan-Y. for
any D C [n]?.

@ We give a generalization of tableau of Theorem C to any D.

@ Then introduce a new polytope 7p whose integer points biject
with tableaux.

@ Integer linear programming is hard but 7p is totally
unimodular. Now use LPfeasibility € P.

@ Link to Schubert polynomials we use:

Conjecture (MTY) For D = D(w), Sp = Newton(&,,) and
&, is S.N.P. ’

Theorem (Fink-Mészaros-St. Dizier '18): The above
conjecture is true. J

@ NP and #P proof via transition.
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Conclusions and summary

@ In this talk we described an algebraic combinatorics paradigm
for complexity on theoretical computer science.

@ Conversely, complexity gives some new perspectives on
algebraic combinatorics (Stanley’s chromatic symmetric
polynomials).

@ In our main example, we obtain new results about Schubert
polynomials and the Schubitope.

More F,'s in algebraic combinatorics deserve analysis of
Newton(F,) and Nonvanishing(F,). J
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