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Computational Complexity Theory I

Poorly understood issue: Why are do some decision problems
have fast algorithms and others seem to need costly search?

Multiplication is easy:

90912135295978188784406583026004374858926083103

28358720428512168960411528640933367824950788367

956756806141 x 814385925911004526572780912628442

93358778990021676278832009141724293243601330041

16702003240828777970252499

Factoring seems hard. RSA $30, 000 challenge:

74037563479561712828046796097429573142593188889

23128908493623263897276503402826627689199641962

51178439958943305021275853701189680982867331732

73108930900552505116877063299072396380786710086

096962537934650563796359

Solved in 2012.
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Computational Complexity Theory II

Complexity has long connections of combinatorics, but mainly
graph theory and optimization. We’d like to propose a paradigm
for algebraic combinatorics to connect to complexity.

∴ I now give a brief summary of complexity theory:

NP: LP (∃x ≥ 0, Ax=b?)

coNP: Primes

P: LP and Primes!

NP-complete: Graph coloring

Famous theoretical computer science problems relevant to us:

P
?
= NP

NP
?
= coNP

NP ∩ coNP
?
= P
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Polynomials

In algebraic combinatorics and combinatorial representation theory
we often study:

F� =
∑
α

cα,�x
α =

∑
s∈S

wt(s) ∈ Z[x1, . . . , xn]

Example 1: � = λ =⇒ F� = sλ (Schur), cα,λ = Kλ,α = Kostka
coeff.

Example 2: � = G = (V ,E ) =⇒ F� = χG (Stanley’s chromatic
symmetric polynomial), cα,G = #proper colorings of G with
αi -many colors i

Example 3: � = w ∈ S∞ =⇒ F� = Sw (Schubert polynomial).
More later.
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The decision problem we care about: Nonvanishing

Nonvanishing: What is the complexity of deciding cα,� 6= 0 as
measured in the length of the input (α, �) assuming arithmetic
takes constant time?

In general undecidable: Gödel incompleteness ’31, Turing’s
halting problem ’36.

Our cases of interest have combinatorial positivity:
∃ rule for cα,� ∈ Z≥0 =⇒ Nonvanishing(F�) ∈ NP.

Warning: Standard combinatorics might not be manifestly in NP.

Ex. Does this SSYT certify Kostka coeff. Kλ,µ 6= 0 where
λ = (10100, 10100) and µ = (020, 4, 3, 2, 1, 2, 1, 06, 2, . . .)?

2121212225252527283636363737...535353545455565657...71727575799191
2222222326262828293737373939...545454555556575758...72737676809297

This is a complexity rationale for Gelfand-Tsetlin polytopes.
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Newton polytopes

Evidently, nonvanishing concerns the Newton polytope,

Newton(F�) = conv{α : cα,� 6= 0} ⊆ Rn.

Definition: (Monical-Tokcan-Y.) F� has saturated Newton polytope
(S.N.P.) if β ∈ Newton(F�) ⇐⇒ cβ,� 6= 0

Many polynomials in algebraic comb. have this property.

Application: A. Woo-Y. solves a complexity problem of
D. Grigoriev-G. Koshevoy.

Further work: subsets of {A. Fink, J. Huh, R. Liu,
J. Matherne, K. Mészáros, A. St. Dizier}.

Numerous open problems remain. For example:

Fact: (MTY) ∆n :=
∏

1≤i<j≤n(xi − xj)
2 is S.N.P. ⇐⇒ n ≤ 4.

Conjecture: (MTY) Fix k, ∃n such that ∆k
n is not S.N.P.
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Complexity and the S.N.P. property

Observation 1: S.N.P. ⇒ nonvanishing(F�) is equivalent to
checking membership of a lattice point in Newton(F�).

Observation 1’: S.N.P. + “efficient” halfspace description of
Newton(F�) =⇒ nonvanishing(F�) ∈ coNP.

∴ in many cases nonvanishing(F�) ∈ NP ∩ coNP.
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Nonvanishing and NP

Example 1’: sλ has S.N.P. Newton(sλ) = Pλ (the
permutahedron). Nonvanishing(sλ) ∈ P by dominance order
(Rado’s theorem).

Example 2’: χG does not have S.N.P..

coloring ∈ NP-complete =⇒ Nonvanishing(χG ) ∈ NP-complete.

∴ nonvanishing hits the extremes of NP.

Question: What about the nonextremes?

Many problems suspected of being NP-intermediate: e.g.,
graph isomorphism, factorization

Ladner’s theorem: P 6= NP =⇒ NP-intermediate 6= ∅
Problems in NP∩ coNP are suspects for NP-intermediate since

coNP ∩ NP-complete 6= ∅ =⇒ NP = coNP!

This is why factorization is not expected to be NP-complete.
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Application of algebraic combinatorics to TCS?

Conjecture 1: [Stanley ’95] If G is claw-free (i.e., it contains no
induced K1,3 subgraph), then χG is Schur positive.

Conjecture 2: [C. Monical ’18] If χG is Schur positive, then it is
SNP.

Conjecture 1+2: If G is claw-free then χG is SNP.

Theorem: (Holyer ’81) Coloring of claw-free G is NP-complete.

Corollary: nonvanishing(χclaw-freeG ) ∈ NP-complete.

Proposition: (Adve-Robichaux-Y. ’18) Conjecture 1+2 and a
halfspace description of Newton(χclawfreeG ) =⇒ NP = coNP

Suggests a new complexity-theoretic rationale for the study of χG .
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An algebraic combinatorics paradigm for complexity

In many cases of algebraic combinatorics, {F�} has combinatorial
positivity and SNP. If one also has an efficient halfspace description
of Newton(F�), then nonvanishing(F�) ∈ NP ∩ coNP.

Three plausible outcomes of such a study:

(I) Unknown: it is an open problem to find additional problems
that are in NP ∩ coNP that are not known to be in P.

(II) P: Give an algorithm. It will likely illuminate some special
structure, of independent combinatorial interest.

(III) NP-complete: (conjecturally) implies NP
?
= coNP with “=”.

Your favorite polynomial family to think about this way?

My favorite is Schubert polynomials. Initially Adve, Robichaux
and I got to outcome (I), but then achieved outcome (II).
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Schubert polynomials

B acts on GLn/B with finitely many orbits, the Schubert cells,
whose closures Xw , w ∈ Sn are the Schubert varieties.

Lascoux and Schützenberger’s (1982) main idea in type A (after
Bernstein-Gelfand-Gelfand):

Pick Sw0 = xn−1
1 xn−2

2 · · · xn−1 as an especially nice
representative of the class of a point

Apply Newton’s divided difference operator

∂i f =
f − f si

xi − xi+1
,

to recursively define all other Sw using weak Bruhat order.

This starts the theory of Schubert polynomials.
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Complexity results

There are many combinatorial rules that establish that cα,w ∈ Z≥0.

However, none of these prove nonvanishing(Sw ) ∈ P since they
involve exponential search.

Theorem A: (Adve-Robichaux-Y. ’18) cα,w is #P-complete.

∴ no poly. time algorithm to compute cα,w exists unless P = NP.

Counting is hard, nonvanishing is easy:

Theorem B: (Adve-Robichaux-Y. ’18) nonvanishing(Sw ) ∈ P

Analogy: Computing the permanent of a 0, 1-matrix is
#P-complete but nonzeroness is easy (Edmonds-Karp matching
algorithm).
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A tableau rule for nonvanishing

Fillings of the Rothe diagram of 31524:

1 1

2 2

1 1

2 1

1 1

3 1

1 1

2 3

1 1

3 2

1 1

3 3

Theorem C: (Adve-Robichaux-Y. ’18)
cα,w 6= 0 ⇐⇒ Tab(w , α) 6= ∅.
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Proofs

The Schubitope SD was introduced by Monical-Tokcan-Y. for
any D ⊆ [n]2.

We give a generalization of tableau of Theorem C to any D.

Then introduce a new polytope TD whose integer points biject
with tableaux.

Integer linear programming is hard but TD is totally
unimodular. Now use LPfeasibility ∈ P.

Link to Schubert polynomials we use:

Conjecture (MTY) For D = D(w), SD = Newton(Sw ) and
Sw is S.N.P.

Theorem (Fink-Mészáros-St. Dizier ’18): The above
conjecture is true.

NP and #P proof via transition.
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Conclusions and summary

In this talk we described an algebraic combinatorics paradigm
for complexity on theoretical computer science.

Conversely, complexity gives some new perspectives on
algebraic combinatorics (Stanley’s chromatic symmetric
polynomials).

In our main example, we obtain new results about Schubert
polynomials and the Schubitope.

More F�’s in algebraic combinatorics deserve analysis of
Newton(F�) and Nonvanishing(F�).
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