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Error bounds: cases where “almost” implies “near”
Suppose A ∈ Rm×n and b ∈ Rm.

Linear equations Ax = b

If A−1(b) := {x ∈ Rn : Ax = b} 6= ∅ then for all u ∈ Rn

‖Au− b‖ small ⇒ u near A−1(b)

Linear inequalities (Hoffman’s error bound) Ax ≤ b

If PA(b) := {x ∈ Rn : Ax ≤ b} 6= ∅ then for all u ∈ Rn

‖(Au− b)+‖ small ⇒ u near PA(b).

Linear equations relative to a set Ax = b, x ∈ R

Suppose R ⊆ Rn and b ∈ A(R), that is, A−1(b) ∩R 6= ∅. Is it the
case that for all u ∈ R

‖Au− b‖ small ⇒ u near A−1(b) ∩R?
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Agenda

Error bound for Ax = b

Hoffman’s error bound for Ax ≤ b

Error bounds for Ax = b, x ∈ R and for Ax ≤ b, x ∈ R

Condition number relative to a reference set

Algorithms to compute Hoffman constants
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Error bound for systems of linear equations
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Systems of linear equations Ax = b
Suppose Rn and Rm be endowed with norms and A ∈ Rm×n \ {0}.
Then for all b ∈ A(Rn) := {Ax : x ∈ Rn} and all u ∈ Rn

dist(u,A−1(b)) ≤ ‖A−1‖ · ‖Au− b‖ (1)

where

‖A−1‖ = max
y∈A(Rn)
‖y‖≤1

min
x∈Rn
Ax=y

‖x‖ =
1

min
v∈A(Rn), ‖v‖∗=1

‖ATv‖∗
.

Inequality (1) is an error bound for Ax = b

If u “almost” solves Ax = b then u is “near” a solution to Ax = b.

Inequality (1) is tight: there exist b ∈ A(Rn) and u ∈ Rn

dist(u,A−1(b)) = ‖A−1‖ · ‖Au− b‖ > 0.

———————————————————————————–
Recall: ‖v‖∗ = max

‖y‖≤1
vTy. For instace, ‖ · ‖∗1 = ‖ · ‖∞ and ‖ · ‖∗2 = ‖ · ‖2

6 / 40



Systems of linear equations Ax = b
Suppose Rn and Rm be endowed with norms and A ∈ Rm×n \ {0}.
Then for all b ∈ A(Rn) := {Ax : x ∈ Rn} and all u ∈ Rn

dist(u,A−1(b)) ≤ ‖A−1‖ · ‖Au− b‖ (1)

where

‖A−1‖ = max
y∈A(Rn)
‖y‖≤1

min
x∈Rn
Ax=y

‖x‖ =
1

min
v∈A(Rn), ‖v‖∗=1

‖ATv‖∗
.

Inequality (1) is an error bound for Ax = b

If u “almost” solves Ax = b then u is “near” a solution to Ax = b.

Inequality (1) is tight: there exist b ∈ A(Rn) and u ∈ Rn

dist(u,A−1(b)) = ‖A−1‖ · ‖Au− b‖ > 0.

———————————————————————————–
Recall: ‖v‖∗ = max

‖y‖≤1
vTy. For instace, ‖ · ‖∗1 = ‖ · ‖∞ and ‖ · ‖∗2 = ‖ · ‖2

6 / 40



Geometric interpretation of ‖A−1‖

Suppose A ∈ Rm×n \ {0}. Then

1

‖A−1‖
= dist (0, relbdy({Ax : ‖x‖ ≤ 1}))

and

1

‖A−1‖
= dist∗

(
0, {ATv : v ∈ A(Rn), ‖v‖∗ = 1}

)
.

For `2 norms 1
‖A−1‖ = smallest positive singular value of A.
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Example

Suppose A =

[
1 0
0 ε

]
for 0 ≤ ε < 1 and R2 is endowed with the `1

norm. Then
1

‖A−1‖
=

{
ε if ε ∈ (0, 1)
1 if ε = 0.

 

{Ax : ‖x‖ ≤ 1} and 1/‖A−1‖ for 0 < ε < 1.

 

{Ax : ‖x‖ ≤ 1} and 1/‖A−1‖ for ε = 0.
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Hoffman’s error bound for systems of linear
inequalities

9 / 40



Systems of linear inequalities Ax ≤ b

Key notation

For A ∈ Rm×n, b ∈ A(Rn) + Rm
+ , and u ∈ Rn

PA(b) := {x ∈ Rn : Ax ≤ b}.

Theorem (Hoffman 1952)

Let A ∈ Rm×n. Then there exists a constant H(A) that depends
only on A such that for all b ∈ A(Rn) + Rm

+ and all u ∈ Rn

dist(u, PA(b)) ≤ H(A) · dist(b−Au,Rm
+ ).

———————————————————————————
For many norms: dist(b−Au,Rm

+ ) = ‖(b−Au)−‖ = ‖(Au− b)+‖.
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Characterization of H(A) (special case)
Suppose A ∈ Rm×n is such that A(Rn) + Rm

+ = Rm. Let

H(A) := max
y∈Rm
‖y‖≤1

min
x∈Rn
Ax≤y

‖x‖ =
1

min
v∈Rm

+ , ‖v‖∗=1
‖ATv‖∗

.

Proposition (Following Renegar 1995, Ramdas & P 2015)

Suppose A ∈ Rm×n is such that A(Rn) + Rm
+ = Rm.

Then for all b ∈ Rm and all u ∈ Rn

dist(u, PA(b)) ≤ H(A) · dist(b−Au,Rm
+ ).

This bound is tight: there exist b ∈ Rm and u ∈ Rn such that

dist(u, PA(b)) = H(A) · dist(b−Au,Rm
+ ) > 0.

——————————————————————————
Observe: A(Rn) + Rm

+ = Rm ⇔ Ax < 0 is feasible.
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Geometric interpretation of H(A) in this special case

Observe

A(Rn) + Rm
+ = Rm ⇔ Ax < 0 is feasible

⇔ ATv = 0, v  0 infeasible.

Second step by Gordan’s Theorem.

Therefore

A(Rn) + Rm
+ = Rm ⇔ 0 6∈ {ATv : v ≥ 0, ‖v‖∗ = 1}.

When this is the case we have

1

H(A)
= dist∗

(
0, {ATv : v ≥ 0, ‖v‖∗ = 1}

)
.
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Example

Suppose A =

−1 ε
1 ε
0 1

 ∈ R3×2 for 0 < ε < 1 and both R3 and R2

are endowed with the `∞ norm. Then

1

H(A)
= ε.

  

{ATv : v ≥ 0, ‖v‖∗ = 1} and 1/H(A) for ε ∈ (0, 1).
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Characterization of H(A) (general case)

Let J (A) := {J ⊆ [m] : AJ(Rn) + RJ
+ = RJ} and

H(A) := max
J∈J (A)

H(AJ)

= max
J∈J (A)

1

min{‖AT
J v‖∗ : v ∈ RJ

+, ‖v‖∗ = 1}
.

(Here [m] is shorthand for {1, . . . ,m}.)

Proposition

Let A ∈ Rm×n \ {0}. Then for all b ∈ A(Rn) +Rm
+ and all u ∈ Rn

dist(u, PA(b)) ≤ H(A) · dist(b−Au,Rm
+ ).

Furthermore, this bound is tight.

—————————————————————————–
Related results by Robinson 1973, Li 1993, Klatte & Thiere 1995,

Wang & Lin 2014.
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Error bounds relative to a reference set

15 / 40



Relative error bound for equations

Consider a system of linear constraints of the form

Ax = b
x ∈ R

where R is a “reference” set representing some easy-to-satisfy
constraints, e.g., x ≥ 0, box constraints, etc.

It is natural to consider an error bound that accounts for this kind
of reference set.

Goal

For u ∈ R, bound dist(u,A−1(b) ∩R) in terms of ‖Au− b‖.
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Why consider relative error bounds?

Because they can be drastically different from regular error bounds.

Example

Suppose A =

[
In−1 0

0 ε

]
for 0 < ε� 1 and we work with `1

norms. For b ∈ A(Rn) we have

dist(u,A−1(b)) ≤ 1

ε
· ‖Au− b‖.

Now suppose R = Rn−1 × {0}. For b ∈ A(R) and u ∈ R

dist(u,A−1(b) ∩R) ≤ ‖Au− b‖.
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Why consider relative error bounds?

Because they can be drastically different from regular error bounds.

Example

Suppose A =

[
1 −1 0
−ε −ε 1

]
for 0 < ε� 1 and we work with `1

norms. For b ∈ A(R3) we have

dist(u,A−1(b)) ≤ ‖Au− b‖.

Now suppose R = R3
+. For b ∈ A(R) and u ∈ R

dist(u,A−1(b) ∩R) ≤ 1

ε
· ‖Au− b‖.

18 / 40



Relative error bound for equations (special case)

Suppose A ∈ Rm×n and R ⊆ Rn is a closed convex cone such that
A(R) := {Ax : x ∈ R} is a linear subspace. Let

H(A|R) := max
y∈A(R)
‖y‖≤1

min
x∈R
Ax=y

‖x‖ =
1

min
v∈A(R), ‖v‖∗=1

ATv−u∈R∗

‖u‖∗
.

Proposition (Following Renegar 1995, Ramdas & P 2015)

Let A ∈ Rm×n and R ⊆ Rn be a closed convex cone such that
A(R) is a linear subspace. Then for all b ∈ A(R) and all u ∈ R

dist(u,A−1(b) ∩R) ≤ H(A|R) · ‖Au− b‖.

Furthermore, this bound is tight.
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Geometric interpretation of H(A|R) in this special case

Observe

Suppose A ∈ Rm×n and R ⊆ Rn is a closed convex cone. Then

A(R) is a linear subspace⇔ 0 ∈ relint ({Ax : x ∈ R, ‖x‖ ≤ 1})
⇔ Ax = 0, x ∈ relint(R) is feasible.

When this is the case we have

1

H(A|R)
= dist (0, relbdy({Ax : x ∈ R, ‖x‖ ≤ 1})) .
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Example

Suppose A =

[
−1 1 0
−ε −ε 1

]
∈ R2×3 for 0 < ε < 1/2, both R3 and

R2 are endowed with the `1 norm, and R = R3
+. Then

1

H(A|R)
= ε.

  

{Ax : ‖x‖ ≤ 1} and 1/H(A|R) for ε ∈ (0, 1).
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Relative error bound for equations when R is polyhedral

Sets T (R) and T (A|R) of tangent cones

Suppose R is a polyhedron. For u ∈ R, let TR(u) denote the
tangent cone to R at u ∈ R, that is,

TR(u) = {d ∈ Rd : u+ td ∈ R for some t > 0}.

Let T (R) := {TR(u) : u ∈ R} and

T (A|R) := {K ∈ T (R) : A(K) is a linear subspace}.

Example

If R = Rn
+ then K ∈ T (R) iff there exists I ⊆ [n] such that

K = {x ∈ Rn : xI ≥ 0}.

In this case K ∈ T (A|R) iff Ax = 0, xI > 0 is feasible.
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Relative error bound for equations when R is polyhedral

Suppose A ∈ Rm×n and R ⊆ Rn is a reference polyhedron. Let

H(A|R) := max
K∈T (A|R)

H(A|K).

Theorem (P, Vera, Zuluaga 2019)

Let A ∈ Rm×n and R ⊆ Rn be a reference polyhedron. Then for
all b ∈ A(R) and all u ∈ R

dist(u,A−1(b) ∩R) ≤ H(A|R) · ‖Au− b‖.

Furthermore, this bound is tight.
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Relative error bound for inequalities

Consider a system of linear constraints of the form

Ax ≤ b
x ∈ R

where R is a reference set.

Recall

PA(b) = {x ∈ Rn : Ax ≤ b} so PA(b) ∩R = {x ∈ R : Ax ≤ b}.

Goal

For u ∈ R, bound dist(u, PA(b) ∩R) in terms of dist(b−Au,Rm
+ ).
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Relative error bound for inequalities (special case)

Suppose R ⊆ Rn is a closed convex cone and A ∈ Rm×n is such
that A(R) + Rm

+ = Rm. Let

H̃(A|R) := max
y∈Rm
‖y‖≤1

min
x∈R
Ax≤y

‖x‖ =
1

min
v∈Rm+ , ‖v‖∗=1

ATv−u∈R∗

‖u‖∗
.

Proposition

Suppose R ⊆ Rn is a closed convex cone and A ∈ Rm×n is such
that A(R) + Rm

+ = Rm. Then for all b ∈ Rm and all u ∈ R

dist(u, PA(b) ∩R) ≤ H̃(A|R) · dist(b−Au,Rm
+ ).

Furthermore this bound is tight.
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Relative error bound for inequalities, R polyhedral
Suppose A ∈ Rm×n and R ⊆ Rn is a reference polyhedron.

Recall that [m] = {1, . . . ,m} and T (R) = {TR(u) : u ∈ R}.
Let

J (A|R) := {(J,K) ∈ [m]× T (R) : AJ(K) + RJ
+ = RJ}

and

H̃(A|R) := max
(J,K)∈J (A|R)

H̃(AJ |K).

Theorem (P, Vera, Zuluaga 2019)

Let A ∈ Rm×n and R ⊆ Rn be a reference polyhedron. Then for
all b ∈ A(R) + Rm

+ and all u ∈ R

dist(u, PA(b) ∩R) ≤ H̃(A|R) · dist(b−Au,Rm
+ ).

Furthermore, this bound is tight.
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Condition number relative to a reference set
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Linear convergence of first-order algorithms

Consider the optimization problem

f? := min
x∈Rn

f(x)

where f : Rn → R is convex and differentiable.

Gradient descent algorithm

xk+1 = xk − tk∇f(xk) for some tk > 0

For illustration purposes, concentrate on the least-squares function

f(x) =
1

2
‖Ax− b‖22

where A ∈ Rm×n, b ∈ Rm.
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Linear convergence of first-order algorithms
Suppose A ∈ Rm×n, b ∈ Rm and f(x) = 1

2‖Ax− b‖
2
2. Let

f? := minx∈Rn f(x) and X? := argminx∈Rn f(x).

Theorem

If tk > 0, k = 0, 1, . . . are judiciously chosen (e.g., via exact
line-search) then the gradient descent iterates satisfy

dist(xk, X
?)2 ≤

(
1− 1

Cond(f)

)k

dist(x0, X
?)2

and

f(xk)− f? ≤
(

1− 1

Cond(f)

)k

(f(x0)− f?),

where
Cond(f) =

(
‖A‖ · ‖A−1‖

)2
.

——————————————————————————–
Above statement holds for f convex, differentiable and suitable Cond(f).
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Linear convergence of first-order algorithms

Suppose A ∈ Rm×n, b ∈ Rm, f(x) = 1
2‖Ax− b‖

2
2, and R ⊆ Rn is

a reference polyhedron.

Consider the optimization problem

f? := min
x∈R

f(x).

Projected gradient descent algorithm

xk+1 = ΠR(xk − tk∇f(xk)).

Here ΠR : Rn → R denotes the orthogonal projection on R, i.e.,

ΠR(z) = min
x∈R
‖z − x‖2.

30 / 40



Linear convergence of first-order algorithms

Suppose A ∈ Rm×n, b ∈ Rm, f(x) = 1
2‖Ax− b‖

2
2, and R ⊆ Rn is

a polyhedron. Let f? := minx∈R f(x), X? := argminx∈R f(x).

Proposition (Gutman-P 2019 following Necoara et al 2018)

If tk > 0, k = 0, 1, . . . are judiciously chosen then the projected
gradient descent iterates satisfy

dist(xk, X
?)2 ≤

(
1− 1

Cond(f |R)

)k

dist(x0, X
?)2

and
f(xk)− f? ≤

(
1− 1

Cond(f |R)

)k

(f(x0)− f?),

where

Cond(f |R) = (‖A|span(R−R)‖ ·H(A|R))2 .

——————————————————————————–
Gutman-P 2019: Above holds for f convex, diff and suitable Cond(f |R).
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Cond(f) versus Cond(f |R)

Suppose A ∈ Rm×n, b ∈ Rm, and f(x) = 1
2‖Ax− b‖

2
2. Recall

Cond(f) =
(
‖A‖ · ‖A−1‖

)2
.

If R ⊆ Rn is a reference polyhedron then

Cond(f |R) =

(
max

K∈T (A|R)
‖(A|K)‖ · max

K∈T (A|R)
‖(A|K)−1‖

)2

,

where for each K ∈ T (A|R)

‖(A|K)‖ = max
x∈K
‖x‖≤1

‖Ax‖ and ‖(A|K)−1‖ = max
y∈A(K)
‖y‖=1

min
x∈K
y=Ax

‖x‖.

The above expression for Cond(f |R) holds because

‖A|span(R−R)‖ = max
K∈T (A|R)

‖(A|K)‖

H(A|R) = max
K∈T (A|R)

‖(A|K)−1‖.
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Algorithms to compute H(A)
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Computation of H(A)

Recall: for A ∈ Rm×n \ {0}

H(A) = max
J∈J (A)

1

min{‖AT
Jv‖∗ : v ∈ RJ

+, ‖v‖∗ = 1}
,

where J (A) = {J ⊆ [m] : AJ(Rn) + RJ
+ = RJ}.

For judiciously chosen norms, the above expression for H(A) can
be formulated as a mixed integer linear program.

Can we do better?
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Computation of H(A) via the covering property

Let F ⊆ J (A) and I ⊆ 2[m] \ J (A). Say that (F , I) satisfies the
covering property if

For all J ⊆ [m] either J ⊆ F for some F ∈ F or I ⊆ J
for some I ∈ I.

Observation

If (F , I) satisfies the covering property then

H(A) = max
J∈F

1

min{‖AT
J v‖∗ : v ∈ RJ

+, ‖v‖∗ = 1}
.

Idea for an algorithm

Gradually build F ⊆ J (A) and I ⊆ 2[m] \ J (A) until (F , I)
satisfies the covering property. Compute H(A) via above formula.
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Computation of H(A) via the covering property
Key step: suppose J is not covered by (F , I) and

v := argmin{‖AT
Jv‖∗ : v ∈ RJ

+, ‖v‖∗ = 1}.

Observe that ‖AT
Jv‖∗ > 0⇔ J ∈ J (A). Let I(v) := {i ∈ J : vi > 0}.

Algorithm 1 Computation of (F , I) and H(A)

1: Let F := ∅, I := ∅, H(A) := 0
2: while (F , I) does not satisfy the covering property do
3: Pick J ∈ 2[m] maximal not covered by (F , I)
4: Let v := argmin{‖AT

J v‖∗ : v ∈ RJ
+, ‖v‖∗ = 1}.

5: if ‖AT
J v‖∗ > 0 then

6: F := F ∪ {J} and H(A) := max
{
H(A), 1

‖AT
Jv‖∗

}
7: else
8: Let I := I ∪ {I(v)}
9: end if

10: end while
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Proposition

Let A ∈ Rm×n \ {0} and let J (A) ⊆ J (A) denote the maximal
sets in J (A) and let J (A) ⊆ 2[m] \ J (A) denote the minimal sets
in 2[m] \ J (A). Algorithm 1 terminates after

|J (A)|+ |J (A)|

iterations. Upon termination Algorithm 1 returns F = J (A) and
I = J (A).

Observe

Algorithm 1 terminates quickly if J (A) has few and large sets.
Most favorable case: J (A) = {[m]} one iteration.
Next most favorable case: J (A) = {[m]} m+ 1 iterations.
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Examples
For convenience, suppose Rn and Rm are endowed with the
`1-norm and `∞-norm respectively.

Example 1 (box)

For A =

[
In
−In

]
∈ R2n×n we have H(A) = n.

Example 2 (simplex)

For A =

[
1Tn
−In

]
∈ R(n+1)×n we have H(A) = 2n+ 1.

Example 3 (`1-unit ball)

Let A ∈ R2n×n be the matrix whose rows are the vectors with
entries in {1,−1}. We computed the following values of H(A):

n 1 2 3 4 5 6 7

H(A) 1 1 3 5 9 17 33
 H(A) = 2n−2 + 1 for n ≥ 3?

Natural conjecture: H(A) = 2n−1 − 1.
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Conclusions

Error bounds (“almost” implies “near”) for

linear equations Ax = b
linear inequalities Ax ≤ b
linear equations/inequalities relative to a reference set

Error bound constant in all cases is something like ‖A−1‖.

Condition number of a function relative to a set.

Algorithms to compute error bound constants.
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