Hoffman constants for systems of linear inequalities

Javier Peña, Carnegie Mellon University (joint work with J. Vera, L. Zuluaga, and D. Gutman)

> Triangle Lectures in Combinatorics North Carolina State University November 16, 2019

Main ideas

Error bounds: cases where "almost" implies "near" Suppose $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Linear equations Ax = bIf $A^{-1}(b) := \{x \in \mathbb{R}^n : Ax = b\} \neq \emptyset$ then for all $u \in \mathbb{R}^n$ $\|Au - b\|$ small $\Rightarrow u$ near $A^{-1}(b)$ Error bounds: cases where "almost" implies "near" Suppose $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Linear equations Ax = bIf $A^{-1}(b) := \{x \in \mathbb{R}^n : Ax = b\} \neq \emptyset$ then for all $u \in \mathbb{R}^n$ $\|Au - b\|$ small $\Rightarrow u$ near $A^{-1}(b)$

Linear inequalities (Hoffman's error bound) $Ax \leq b$ If $P_A(b) := \{x \in \mathbb{R}^n : Ax \leq b\} \neq \emptyset$ then for all $u \in \mathbb{R}^n$

$$||(Au - b)_+||$$
 small $\Rightarrow u$ near $P_A(b)$.

Error bounds: cases where "almost" implies "near" Suppose $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Linear equations Ax = bIf $A^{-1}(b) := \{x \in \mathbb{R}^n : Ax = b\} \neq \emptyset$ then for all $u \in \mathbb{R}^n$ $\|Au - b\|$ small $\Rightarrow u$ near $A^{-1}(b)$

Linear inequalities (Hoffman's error bound) $Ax \leq b$ If $P_A(b) := \{x \in \mathbb{R}^n : Ax \leq b\} \neq \emptyset$ then for all $u \in \mathbb{R}^n$

 $||(Au-b)_+||$ small $\Rightarrow u$ near $P_A(b)$.

Linear equations relative to a set Ax = b, $x \in R$ Suppose $R \subseteq \mathbb{R}^n$ and $b \in A(R)$, that is, $A^{-1}(b) \cap R \neq \emptyset$. Is it the case that for all $u \in R$

$$||Au - b|| \text{ small } \Rightarrow u \text{ near } A^{-1}(b) \cap R?$$

Agenda

- Error bound for Ax = b
- Hoffman's error bound for $Ax \leq b$
- Error bounds for $Ax = b, x \in R$ and for $Ax \leq b, x \in R$
- Condition number relative to a reference set
- Algorithms to compute Hoffman constants

Error bound for systems of linear equations

Systems of linear equations Ax = b

Suppose \mathbb{R}^n and \mathbb{R}^m be endowed with norms and $A \in \mathbb{R}^{m \times n} \setminus \{0\}$. Then for all $b \in A(\mathbb{R}^n) := \{Ax : x \in \mathbb{R}^n\}$ and all $u \in \mathbb{R}^n$ $\operatorname{dist}(u, A^{-1}(b)) \le \|A^{-1}\| \cdot \|Au - b\|$ (1)

where

$$||A^{-1}|| = \max_{\substack{y \in A(\mathbb{R}^n) \\ ||y|| \le 1}} \min_{\substack{x \in \mathbb{R}^n \\ Ax = y}} ||x|| = \frac{1}{\min_{v \in A(\mathbb{R}^n), ||v||^* = 1} ||A^{\mathsf{T}}v||^*}.$$

Systems of linear equations Ax = b

Suppose \mathbb{R}^n and \mathbb{R}^m be endowed with norms and $A \in \mathbb{R}^{m \times n} \setminus \{0\}$. Then for all $b \in A(\mathbb{R}^n) := \{Ax : x \in \mathbb{R}^n\}$ and all $u \in \mathbb{R}^n$ $\operatorname{dist}(u, A^{-1}(b)) \le \|A^{-1}\| \cdot \|Au - b\|$ (1)

where

$$||A^{-1}|| = \max_{\substack{y \in A(\mathbb{R}^n) \\ ||y|| \le 1}} \min_{\substack{x \in \mathbb{R}^n \\ Ax = y}} ||x|| = \frac{1}{\min_{v \in A(\mathbb{R}^n), ||v||^* = 1} ||A^{\mathsf{T}}v||^*}.$$

Inequality (1) is an *error bound* for Ax = bIf u "almost" solves Ax = b then u is "near" a solution to Ax = b. Inequality (1) is tight: there exist $b \in A(\mathbb{R}^n)$ and $u \in \mathbb{R}^n$

$$\mathsf{dist}(u, A^{-1}(b)) = \|A^{-1}\| \cdot \|Au - b\| > 0.$$

Recall: $||v||^* = \max_{||y|| \le 1} v^\mathsf{T} y$. For instace, $||\cdot||_1^* = ||\cdot||_\infty$ and $||\cdot||_2^* = ||\cdot||_2$

Geometric interpretation of $||A^{-1}||$

Suppose $A \in \mathbb{R}^{m \times n} \setminus \{0\}$. Then

$$\frac{1}{\|A^{-1}\|} = \mathsf{dist}\left(0, \mathsf{relbdy}(\{Ax: \|x\| \le 1\})\right)$$

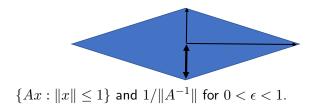
and

$$\frac{1}{\|A^{-1}\|} = \mathsf{dist}^* \left(0, \{A^\mathsf{T} v : v \in A(\mathbb{R}^n), \|v\|^* = 1\} \right).$$

For ℓ_2 norms $\frac{1}{\|A^{-1}\|}$ = smallest positive singular value of A.

Example

Suppose $A = \begin{bmatrix} 1 & 0 \\ 0 & \epsilon \end{bmatrix}$ for $0 \le \epsilon < 1$ and \mathbb{R}^2 is endowed with the ℓ_1 norm. Then $\frac{1}{\|A^{-1}\|} = \begin{cases} \epsilon & \text{if } \epsilon \in (0, 1) \\ 1 & \text{if } \epsilon = 0. \end{cases}$



$$\{Ax: \|x\|\leq 1\}$$
 and $1/\|A^{-1}\|$ for $\epsilon=0.$

Hoffman's error bound for systems of linear inequalities

Systems of linear inequalities $Ax \leq b$

Key notation For $A \in \mathbb{R}^{m \times n}$, $b \in A(\mathbb{R}^n) + \mathbb{R}^m_+$, and $u \in \mathbb{R}^n$ $P_A(b) := \{x \in \mathbb{R}^n : Ax < b\}.$

Theorem (Hoffman 1952)

Let $A \in \mathbb{R}^{m \times n}$. Then there exists a constant H(A) that depends only on A such that for all $b \in A(\mathbb{R}^n) + \mathbb{R}^m_+$ and all $u \in \mathbb{R}^n$

 $\mathsf{dist}(u, P_A(b)) \le H(A) \cdot \mathsf{dist}(b - Au, \mathbb{R}^m_+).$

For many norms: dist $(b - Au, \mathbb{R}^m_+) = \|(b - Au)_-\| = \|(Au - b)_+\|$.

Characterization of H(A) (special case)

Suppose $A \in \mathbb{R}^{m \times n}$ is such that $A(\mathbb{R}^n) + \mathbb{R}^m_+ = \mathbb{R}^m$. Let

$$H(A) := \max_{\substack{y \in \mathbb{R}^m \\ \|y\| \le 1}} \min_{\substack{x \in \mathbb{R}^n \\ Ax \le y}} \|x\| = \frac{1}{\min_{v \in \mathbb{R}^m_+, \|v\|^* = 1}} \|A^{\mathsf{T}}v\|^*.$$

Characterization of H(A) (special case)

Suppose $A \in \mathbb{R}^{m \times n}$ is such that $A(\mathbb{R}^n) + \mathbb{R}^m_+ = \mathbb{R}^m$. Let

$$H(A) := \max_{\substack{y \in \mathbb{R}^m \\ \|y\| \le 1}} \min_{\substack{x \in \mathbb{R}^n \\ Ax \le y}} \|x\| = \frac{1}{\min_{v \in \mathbb{R}^m_+, \|v\|^* = 1} \|A^{\mathsf{T}}v\|^*}$$

Proposition (Following Renegar 1995, Ramdas & P 2015) Suppose $A \in \mathbb{R}^{m \times n}$ is such that $A(\mathbb{R}^n) + \mathbb{R}^m_+ = \mathbb{R}^m$. Then for all $b \in \mathbb{R}^m$ and all $u \in \mathbb{R}^n$

$$\mathsf{dist}(u, P_A(b)) \le H(A) \cdot \mathsf{dist}(b - Au, \mathbb{R}^m_+).$$

This bound is tight: there exist $b \in \mathbb{R}^m$ and $u \in \mathbb{R}^n$ such that

$$\mathsf{dist}(u, P_A(b)) = H(A) \cdot \mathsf{dist}(b - Au, \mathbb{R}^m_+) > 0.$$

Observe: $A(\mathbb{R}^n) + \mathbb{R}^m_+ = \mathbb{R}^m \Leftrightarrow Ax < 0$ is feasible.

Geometric interpretation of H(A) in this special case

Observe

$$A(\mathbb{R}^n) + \mathbb{R}^m_+ = \mathbb{R}^m \Leftrightarrow Ax < 0 \text{ is feasible}$$
$$\Leftrightarrow A^\mathsf{T} v = 0, \ v \ge 0 \text{ infeasible}.$$

Second step by Gordan's Theorem.

Therefore

$$A(\mathbb{R}^n) + \mathbb{R}^m_+ = \mathbb{R}^m \Leftrightarrow 0 \notin \{A^\mathsf{T} v : v \ge 0, \|v\|^* = 1\}.$$

When this is the case we have

$$\frac{1}{H(A)} = \mathsf{dist}^* \left(0, \{ A^{\mathsf{T}} v : v \ge 0, \|v\|^* = 1 \} \right).$$

Example

Suppose
$$A = \begin{bmatrix} -1 & \epsilon \\ 1 & \epsilon \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 2}$$
 for $0 < \epsilon < 1$ and both \mathbb{R}^3 and \mathbb{R}^2 are endowed with the ℓ_{∞} norm. Then
$$\frac{1}{H(A)} = \epsilon.$$
$$\{A^{\mathsf{T}}v : v \ge 0, \ \|v\|^* = 1\} \text{ and } 1/H(A) \text{ for } \epsilon \in (0, 1).$$

Characterization of H(A) (general case) Let $\mathcal{J}(A) := \{J \subseteq [m] : A_J(\mathbb{R}^n) + \mathbb{R}^J_+ = \mathbb{R}^J\}$ and $H(A) := \max_{J \in \mathcal{J}(A)} H(A_J)$ $= \max_{J \in \mathcal{J}(A)} \frac{1}{\min\{\|A_J^\mathsf{T}v\|^* : v \in \mathbb{R}^J_+, \|v\|^* = 1\}}.$ (Here [m] is shorthand for $\{1, \dots, m\}$.)

14 / 40

Characterization of H(A) (general case) Let $\mathcal{J}(A) := \{J \subseteq [m] : A_J(\mathbb{R}^n) + \mathbb{R}^J_+ = \mathbb{R}^J\}$ and $H(A) := \max_{J \in \mathcal{J}(A)} H(A_J)$ $= \max_{J \in \mathcal{J}(A)} \frac{1}{\min\{\|A_I^{\mathsf{T}}v\|^* : v \in \mathbb{R}_+^J, \|v\|^* = 1\}}.$ (Here [m] is shorthand for $\{1, \ldots, m\}$.) Proposition Let $A \in \mathbb{R}^{m \times n} \setminus \{0\}$. Then for all $b \in A(\mathbb{R}^n) + \mathbb{R}^m_+$ and all $u \in \mathbb{R}^n$ $\operatorname{dist}(u, P_A(b)) \leq H(A) \cdot \operatorname{dist}(b - Au, \mathbb{R}^m_{\perp}).$

Furthermore, this bound is tight.

Related results by Robinson 1973, Li 1993, Klatte & Thiere 1995, Wang & Lin 2014.

Error bounds relative to a reference set

Relative error bound for equations

Consider a system of linear constraints of the form

```
\begin{aligned} Ax &= b\\ x \in R \end{aligned}
```

where R is a "reference" set representing some easy-to-satisfy constraints, e.g., $x\geq 0,$ box constraints, etc.

It is natural to consider an error bound that accounts for this kind of reference set.

Goal

For $u \in R$, bound dist $(u, A^{-1}(b) \cap R)$ in terms of ||Au - b||.

Why consider relative error bounds?

Because they can be drastically different from regular error bounds.

Example

Suppose
$$A = \begin{bmatrix} I_{n-1} & 0 \\ 0 & \epsilon \end{bmatrix}$$
 for $0 < \epsilon \ll 1$ and we work with ℓ_1 norms. For $b \in A(\mathbb{R}^n)$ we have

$$\mathsf{dist}(u, A^{-1}(b)) \le \frac{1}{\epsilon} \cdot \|Au - b\|.$$

Now suppose $R = \mathbb{R}^{n-1} \times \{0\}$. For $b \in A(R)$ and $u \in R$

 $\operatorname{dist}(u, A^{-1}(b) \cap R) \le \|Au - b\|.$

Why consider relative error bounds?

Because they can be drastically different from regular error bounds.

Example

Suppose
$$A = \begin{bmatrix} 1 & -1 & 0 \\ -\epsilon & -\epsilon & 1 \end{bmatrix}$$
 for $0 < \epsilon \ll 1$ and we work with ℓ_1 norms. For $b \in A(\mathbb{R}^3)$ we have
 $\operatorname{dist}(u, A^{-1}(b)) \leq ||Au - b||.$
Now suppose $R = \mathbb{R}^3_+$. For $b \in A(R)$ and $u \in R$
 $\operatorname{dist}(u, A^{-1}(b) \cap R) \leq \frac{1}{\epsilon} \cdot ||Au - b||.$

Relative error bound for equations (special case)

Suppose $A \in \mathbb{R}^{m \times n}$ and $R \subseteq \mathbb{R}^n$ is a closed convex cone such that $A(R) := \{Ax : x \in R\}$ is a linear subspace. Let

$$H(A|R) := \max_{\substack{y \in A(R) \\ \|y\| \le 1}} \min_{\substack{x \in R \\ Ax = y}} \|x\| = \frac{1}{\min_{\substack{v \in A(R), \|v\|^* = 1 \\ A^{\mathsf{T}}v - u \in R^*}} \|u\|^*}.$$

Relative error bound for equations (special case)

Suppose $A \in \mathbb{R}^{m \times n}$ and $R \subseteq \mathbb{R}^n$ is a closed convex cone such that $A(R) := \{Ax : x \in R\}$ is a linear subspace. Let

$$H(A|R) := \max_{\substack{y \in A(R) \\ \|y\| \le 1}} \min_{\substack{x \in R \\ Ax=y}} \|x\| = \frac{1}{\min_{\substack{v \in A(R), \|v\|^* = 1 \\ A^{\mathsf{T}}v - u \in R^*}} \|u\|^*}.$$

Proposition (Following Renegar 1995, Ramdas & P 2015)

Let $A \in \mathbb{R}^{m \times n}$ and $R \subseteq \mathbb{R}^n$ be a closed convex cone such that A(R) is a linear subspace. Then for all $b \in A(R)$ and all $u \in R$

$$\mathsf{dist}(u, A^{-1}(b) \cap R) \le H(A|R) \cdot \|Au - b\|.$$

Furthermore, this bound is tight.

Geometric interpretation of H(A|R) in this special case

Observe

Suppose $A \in \mathbb{R}^{m \times n}$ and $R \subseteq \mathbb{R}^n$ is a closed convex cone. Then

$$\begin{split} A(R) \text{ is a linear subspace } &\Leftrightarrow 0 \in \mathsf{relint}\left(\{Ax : x \in R, \|x\| \leq 1\}\right) \\ &\Leftrightarrow Ax = 0, x \in \mathsf{relint}(R) \text{ is feasible.} \end{split}$$

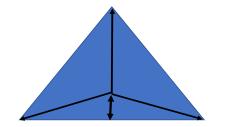
When this is the case we have

$$\frac{1}{H(A|R)} = \operatorname{dist}\left(0, \operatorname{relbdy}(\{Ax: x \in R, \|x\| \leq 1\})\right).$$

Example

Suppose $A = \begin{bmatrix} -1 & 1 & 0 \\ -\epsilon & -\epsilon & 1 \end{bmatrix} \in \mathbb{R}^{2 \times 3}$ for $0 < \epsilon < 1/2$, both \mathbb{R}^3 and \mathbb{R}^2 are endowed with the ℓ_1 norm, and $R = \mathbb{R}^3_+$. Then

$$\frac{1}{H(A|R)} = \epsilon.$$



 $\{Ax: \|x\|\leq 1\} \text{ and } 1/H(A|R) \text{ for } \epsilon\in (0,1).$

Relative error bound for equations when R is polyhedral

Sets $\mathcal{T}(R)$ and $\mathcal{T}(A|R)$ of tangent cones

Suppose R is a polyhedron. For $u \in \mathbb{R}$, let $T_R(u)$ denote the *tangent cone* to R at $u \in R$, that is,

$$T_R(u) = \{ d \in \mathbb{R}^d : u + td \in R \text{ for some } t > 0 \}.$$

Let $\mathcal{T}(R) := \{T_R(u) : u \in R\}$ and

 $\mathcal{T}(A|R) := \{K \in \mathcal{T}(R) : A(K) \text{ is a linear subspace} \}.$

Example

If $R=\mathbb{R}^n_+$ then $K\in\mathcal{T}(R)$ iff there exists $I\subseteq[n]$ such that

$$K = \{ x \in \mathbb{R}^n : x_I \ge 0 \}.$$

In this case $K \in \mathcal{T}(A|R)$ iff $Ax = 0, x_I > 0$ is feasible.

Relative error bound for equations when R is polyhedral

Suppose $A \in \mathbb{R}^{m \times n}$ and $R \subseteq \mathbb{R}^n$ is a reference polyhedron. Let

$$H(A|R) := \max_{K \in \mathcal{T}(A|R)} H(A|K).$$

Theorem (P, Vera, Zuluaga 2019) Let $A \in \mathbb{R}^{m \times n}$ and $R \subseteq \mathbb{R}^n$ be a reference polyhedron. Then for all $b \in A(R)$ and all $u \in R$

$$\mathsf{dist}(u, A^{-1}(b) \cap R) \le H(A|R) \cdot \|Au - b\|.$$

Furthermore, this bound is tight.

Relative error bound for inequalities

Consider a system of linear constraints of the form

$$\begin{array}{l} Ax \le b\\ x \in R \end{array}$$

where R is a reference set.

Recall

$$P_A(b) = \{x \in \mathbb{R}^n : Ax \le b\}$$
 so $P_A(b) \cap R = \{x \in R : Ax \le b\}.$

Goal

For $u \in R$, bound dist $(u, P_A(b) \cap R)$ in terms of dist $(b - Au, \mathbb{R}^m_+)$.

Relative error bound for inequalities (special case)

Suppose $R \subseteq \mathbb{R}^n$ is a closed convex cone and $A \in \mathbb{R}^{m \times n}$ is such that $A(R) + \mathbb{R}^m_+ = \mathbb{R}^m$. Let

$$\tilde{H}(A|R) := \max_{\substack{y \in \mathbb{R}^m \\ \|y\| \le 1}} \min_{\substack{x \in R \\ Ax \le y}} \|x\| = \frac{1}{\min_{\substack{v \in \mathbb{R}^m \\ +}, \|v\|^* = 1 \\ A^{\mathsf{T}}v - u \in R^*}} \|u\|^*.$$

Proposition

Suppose $R \subseteq \mathbb{R}^n$ is a closed convex cone and $A \in \mathbb{R}^{m \times n}$ is such that $A(R) + \mathbb{R}^m_+ = \mathbb{R}^m$. Then for all $b \in \mathbb{R}^m$ and all $u \in R$

$$\mathsf{dist}(u, P_A(b) \cap R) \le \tilde{H}(A|R) \cdot \mathsf{dist}(b - Au, \mathbb{R}^m_+).$$

Furthermore this bound is tight.

Relative error bound for inequalities, R polyhedral Suppose $A \in \mathbb{R}^{m \times n}$ and $R \subseteq \mathbb{R}^n$ is a reference polyhedron. Recall that $[m] = \{1, \ldots, m\}$ and $\mathcal{T}(R) = \{T_R(u) : u \in R\}$. Let

$$\mathcal{J}(A|R) := \{ (J,K) \in [m] \times \mathcal{T}(R) : A_J(K) + \mathbb{R}^J_+ = \mathbb{R}^J \}$$

and

$$\tilde{H}(A|R) := \max_{(J,K)\in\mathcal{J}(A|R)} \tilde{H}(A_J|K).$$

Theorem (P, Vera, Zuluaga 2019)

Let $A \in \mathbb{R}^{m \times n}$ and $R \subseteq \mathbb{R}^n$ be a reference polyhedron. Then for all $b \in A(R) + \mathbb{R}^m_+$ and all $u \in R$

 $\operatorname{dist}(u, P_A(b) \cap R) \leq \tilde{H}(A|R) \cdot \operatorname{dist}(b - Au, \mathbb{R}^m_+).$

Furthermore, this bound is tight.

Condition number relative to a reference set

Consider the optimization problem

$$f^\star := \min_{x \in \mathbb{R}^n} f(x)$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable.

Gradient descent algorithm

$$x_{k+1} = x_k - t_k \nabla f(x_k)$$
 for some $t_k > 0$

For illustration purposes, concentrate on the least-squares function

$$f(x) = \frac{1}{2} ||Ax - b||_2^2$$

where $A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m$.

Suppose $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $f(x) = \frac{1}{2} ||Ax - b||_2^2$. Let $f^* := \min_{x \in \mathbb{R}^n} f(x)$ and $X^* := \operatorname{argmin}_{x \in \mathbb{R}^n} f(x)$.

Theorem

If $t_k > 0$, k = 0, 1, ... are judiciously chosen (e.g., via exact line-search) then the gradient descent iterates satisfy

$$\operatorname{dist}(x_k, X^{\star})^2 \le \left(1 - \frac{1}{\operatorname{Cond}(f)}\right)^k \operatorname{dist}(x_0, X^{\star})^2$$

and

$$f(x_k) - f^* \le \left(1 - \frac{1}{\text{Cond}(f)}\right)^k (f(x_0) - f^*),$$

where

$$Cond(f) = (||A|| \cdot ||A^{-1}||)^2.$$

Above statement holds for f convex, differentiable and suitable Cond(f).

Suppose $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $f(x) = \frac{1}{2} ||Ax - b||_2^2$, and $R \subseteq \mathbb{R}^n$ is a reference polyhedron.

Consider the optimization problem

$$f^\star := \min_{x \in R} f(x).$$

Projected gradient descent algorithm

$$x_{k+1} = \prod_R (x_k - t_k \nabla f(x_k)).$$

Here $\Pi_R : \mathbb{R}^n \to R$ denotes the orthogonal projection on R, i.e.,

$$\Pi_R(z) = \min_{x \in R} \|z - x\|_2.$$

Suppose $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $f(x) = \frac{1}{2} ||Ax - b||_2^2$, and $R \subseteq \mathbb{R}^n$ is a polyhedron. Let $f^* := \min_{x \in R} f(x)$, $X^* := \operatorname{argmin}_{x \in R} f(x)$.

Proposition (Gutman-P 2019 following Necoara et al 2018) If $t_k > 0$, k = 0, 1, ... are judiciously chosen then the projected gradient descent iterates satisfy

$$\operatorname{dist}(x_k, X^{\star})^2 \le \left(1 - \frac{1}{\operatorname{Cond}(f|R)}\right)^k \operatorname{dist}(x_0, X^{\star})^2$$

and

$$f(x_k) - f^* \le \left(1 - \frac{1}{\mathsf{Cond}(f|R)}\right)^k (f(x_0) - f^*),$$

where

$$\operatorname{Cond}(f|R) = (\|A|\operatorname{span}(R-R)\| \cdot H(A|R))^2.$$

Gutman-P 2019: Above holds for f convex, diff and suitable Cond(f|R).

$\mathsf{Cond}(f)$ versus $\mathsf{Cond}(f|R)$

Suppose
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, and $f(x) = \frac{1}{2} ||Ax - b||_2^2$. Recall
 $\operatorname{Cond}(f) = (||A|| \cdot ||A^{-1}||)^2$.

If $R\subseteq \mathbb{R}^n$ is a reference polyhedron then

$$\mathsf{Cond}(f|R) = \left(\max_{K \in \mathcal{T}(A|R)} \|(A|K)\| \cdot \max_{K \in \mathcal{T}(A|R)} \|(A|K)^{-1}\|\right)^2,$$

where for each $K \in \mathcal{T}(A|R)$

$$\|(A|K)\| = \max_{\substack{x \in K \\ \|x\| \le 1}} \|Ax\| \text{ and } \|(A|K)^{-1}\| = \max_{\substack{y \in A(K) \\ \|y\| = 1}} \min_{\substack{x \in K \\ y = Ax}} \|x\|.$$

The above expression for $\operatorname{Cond}(f|R)$ holds because

$$\begin{split} \|A|\text{span}(R-R)\| &= \max_{K \in \mathcal{T}(A|R)} \|(A|K)\| \\ H(A|R) &= \max_{K \in \mathcal{T}(A|R)} \|(A|K)^{-1}\| \end{split}$$

Algorithms to compute H(A)

Computation of H(A)

Recall: for $A \in \mathbb{R}^{m \times n} \setminus \{0\}$

$$\begin{split} H(A) &= \max_{J \in \mathcal{J}(A)} \frac{1}{\min\{\|A_J^\mathsf{T} v\|^* : v \in \mathbb{R}_+^J, \|v\|^* = 1\}}, \end{split}$$
 where
$$\mathcal{J}(A) = \{J \subseteq [m] : A_J(\mathbb{R}^n) + \mathbb{R}_+^J = \mathbb{R}^J\}. \end{split}$$

For judiciously chosen norms, the above expression for H(A) can be formulated as a mixed integer linear program.

Can we do better?

Computation of H(A) via the covering property

Let $\mathcal{F} \subseteq \mathcal{J}(A)$ and $\mathcal{I} \subseteq 2^{[m]} \setminus \mathcal{J}(A)$. Say that $(\mathcal{F}, \mathcal{I})$ satisfies the covering property if

For all $J \subseteq [m]$ either $J \subseteq F$ for some $F \in \mathcal{F}$ or $I \subseteq J$ for some $I \in \mathcal{I}$.

Observation

If $(\mathcal{F},\mathcal{I})$ satisfies the covering property then

$$H(A) = \max_{J \in \mathcal{F}} \frac{1}{\min\{\|A_J^{\mathsf{T}}v\|^* : v \in \mathbb{R}_+^J, \|v\|^* = 1\}}.$$

Idea for an algorithm

Gradually build $\mathcal{F} \subseteq \mathcal{J}(A)$ and $\mathcal{I} \subseteq 2^{[m]} \setminus \mathcal{J}(A)$ until $(\mathcal{F}, \mathcal{I})$ satisfies the covering property. Compute H(A) via above formula.

Computation of H(A) via the *covering property*

Key step: suppose J is not covered by $(\mathcal{F},\mathcal{I})$ and

$$v:= \arg\!\min\{\|A_J^\mathsf{T} v\|^*: v \in \mathbb{R}_+^J, \|v\|^*=1\}.$$

Observe that $||A_J^\mathsf{T}v||^* > 0 \Leftrightarrow J \in \mathcal{J}(A)$. Let $I(v) := \{i \in J : v_i > 0\}$.

Algorithm 1 Computation of
$$(\mathcal{F}, \mathcal{I})$$
 and $H(A)$ 1: Let $\mathcal{F} := \emptyset, \ \mathcal{I} := \emptyset, H(A) := 0$ 2: while $(\mathcal{F}, \mathcal{I})$ does not satisfy the covering property do3: Pick $J \in 2^{[m]}$ maximal not covered by $(\mathcal{F}, \mathcal{I})$ 4: Let $v := \operatorname{argmin}\{\|A_J^T v\|^* : v \in \mathbb{R}^J_+, \|v\|^* = 1\}.$ 5: if $\|A_J^T v\|^* > 0$ then6: $\mathcal{F} := \mathcal{F} \cup \{J\}$ and $H(A) := \max\left\{H(A), \frac{1}{\|A_J^T v\|^*}\right\}$ 7: else8: Let $\mathcal{I} := \mathcal{I} \cup \{I(v)\}$ 9: end if10: end while

Proposition

Let $A \in \mathbb{R}^{m \times n} \setminus \{0\}$ and let $\overline{\mathcal{J}}(A) \subseteq \mathcal{J}(A)$ denote the maximal sets in $\mathcal{J}(A)$ and let $\underline{\mathcal{J}}(A) \subseteq 2^{[m]} \setminus \mathcal{J}(A)$ denote the minimal sets in $2^{[m]} \setminus \mathcal{J}(A)$. Algorithm 1 terminates after

 $|\overline{\mathcal{J}}(A)| + |\underline{\mathcal{J}}(A)|$

iterations. Upon termination Algorithm 1 returns $\mathcal{F} = \overline{\mathcal{J}}(A)$ and $\mathcal{I} = \underline{\mathcal{J}}(A)$.

Observe

Algorithm 1 terminates quickly if $\overline{\mathcal{J}}(A)$ has few and large sets. Most favorable case: $\overline{\mathcal{J}}(A) = \{[m]\} \rightsquigarrow$ one iteration. Next most favorable case: $\underline{\mathcal{J}}(A) = \{[m]\} \rightsquigarrow m + 1$ iterations.

Examples

For convenience, suppose \mathbb{R}^n and \mathbb{R}^m are endowed with the $\ell_1\text{-norm}$ and $\ell_\infty\text{-norm}$ respectively.

Example 1 (box)

For
$$A = \begin{bmatrix} I_n \\ -I_n \end{bmatrix} \in \mathbb{R}^{2n \times n}$$
 we have $H(A) = n$.

Example 2 (simplex)

For
$$A = \begin{bmatrix} \mathbf{1}_n^\mathsf{T} \\ -\mathbf{I}_n \end{bmatrix} \in \mathbb{R}^{(n+1) \times n}$$
 we have $H(A) = 2n + 1$.

Example 3 (ℓ_1 -unit ball)

Let $A \in \mathbb{R}^{2^n \times n}$ be the matrix whose rows are the vectors with entries in $\{1, -1\}$. We computed the following values of H(A):

Conclusions

- Error bounds ("almost" implies "near") for
 - linear equations Ax = b
 - linear inequalities $Ax \leq b$
 - linear equations/inequalities relative to a reference set
- Error bound constant in all cases is something like $||A^{-1}||$.
- Condition number of a function relative to a set.
- Algorithms to compute error bound constants.

Main references

- Peña, Vera, and Zuluaga (2019), New characterizations of Hoffman constants for systems of linear constraints, ArXiv.
- Gutman and Peña (2019), The condition number of a function relative to a set, *ArXiv*.
- Necoara, Nesterov, and Glineur (2018), Linear convergence of first-order methods for non-strongly convex optimization, *Math Prog.*
- Hoffman (1952), On approximate solutions of systems of linear inequalities, *J. of Research of National Bureau of Standards.*