

COMBINATORIAL GEOMETRY OF DEEP NEURAL NETWORKS

Liwen Zhang*• Gregory Naitzat**• Lek-Heng Lim**

* Facebook ** The University of Chicago Result I. A large class of neural networks and tropical rational functions are equivalent:

$$\sigma^{(L)} \circ \rho^{(L)} \circ \cdots \circ \sigma^{(1)} \circ \rho^{(1)}(x) \iff \underbrace{\frac{f(x)}{g(x)} = \frac{a_0 + a_1x + a_2x^2 + \dots + a_nx^n}{b_0 + b_1x + b_2x^2 + \dots + b_mx^m}}_{\text{def}}$$

multivariate, over tropical semiring

A new way to look at and study neural networks.

Result II. We use our approach to show that deep neural networks are exponentially more expressive than shallow networks.

OVERVIEW

ReLU network: a complex classification problem requires decision boundary with **many linear pieces**

A simple decision boundary.

A complex decision boundary.

OVERVIEW

TROPICAL SEMIRING

• Tropical semiring $\mathbb{T} \coloneqq (\mathbb{R} \cup \{-\infty\}, \oplus, \odot)$:

 $x \oplus y \coloneqq \max\{x, y\}$ (tropical addition) $x \odot y \coloneqq x + y$ (tropical multiplication)

- $-\infty$ is the additive identity: $-\infty \oplus x = \max\{-\infty, x\} = x$.
- ▶ 0 is the multiplicative identity: $0 \odot x = 0 + x = x$.
- Actually a semifield (i.e., no additive inverse) but historically called a semiring.
- \blacktriangleright Isomorphic alternative: \min in place of \max , $+\infty$ in place of $-\infty$
- Many algebraic objects and notions generalize to tropical settings (e.g., matrices, polynomials, tensors, rank, determinant, degree, etc) but interpretation changes.
- ► Tropical algebraic geometry: T in place of C in algebraic geometry (roughly).
- ► Provides fresh perspectives and new powerful techniques [MACLAGAN-STURMFELS 2015].

EXAMPLES

- ► Symplectic Geometry. Gromov–Witten invariants can be found tropically [MIKHALKIN 2005]
- ▶ Integer Programming. $A \in \mathbb{Z}_{+}^{m \times n}$, $b \in \mathbb{Z}_{+}^{m}$, $c \in \mathbb{R}^{n}$ (assume $A^{\mathsf{T}}\mathbb{1} = a\mathbb{1}$ and $b^{\mathsf{T}}\mathbb{1} = ma$),

maximize $c^{\mathsf{T}}x$ subject to $Ax = b, x \in \mathbb{Z}_{+}^{n}$.

Solution is coefficient of monomial $y_1^{b_1} \odot y_2^{b_2} \odot \dots \odot y_m^{b_m}$ in $d{\rm th}$ tropical power of

 $c_1 \odot y_1^{a_{11}} \odot y_2^{a_{21}} \odot \cdots \odot y_m^{a_{m1}} \oplus \cdots \oplus c_n \odot y_1^{a_{1n}} \odot y_2^{a_{2n}} \odot \cdots \odot y_m^{a_{mn}}.$

► Computer Science. Floyd's algorithm for shortest path in weighted digraph G = tropical power of adjacency matrix A_G ∈ ℝ^{n×n}, i.e., A_G^{⊙n} = A_G ⊙ A_G ⊙ · · · ⊙ A_G. Hungarian assignment method = tropical Gaussian elimination for computing tropical determinant,

tropdet(X) =
$$\bigoplus_{\pi \in \mathfrak{S}_n} x_{1\pi(1)} \odot x_{2\pi(2)} \odot \cdots \odot x_{n\pi(n)},$$

 $x_{ij} = \text{cost of assigning job } i \text{ to worker } j.$

TROPICAL POWER

• Tropical power. $n \in \mathbb{N}$,

$$x^n \coloneqq x^{\odot n} \coloneqq \underbrace{x \odot \cdots \odot x}_{n \text{ times}} = n \cdot x$$

where \cdot is standard multiplication.

▶ Tropical monomial. $c \in \mathbb{R} \cup \{-\infty\}, a_i \in \mathbb{N}$,

$$cx^{\alpha} \coloneqq c \odot x_1^{a_1} \odot x_2^{a_2} \odot \cdots \odot x_d^{a_d}$$

where $\alpha = (a_1, \ldots, a_d) \in \mathbb{N}^d$.

Tropical polynomial. Tropical sum of tropical monomials

$$f(x) = c_1 x^{\alpha_1} \oplus \dots \oplus c_r x^{\alpha_r}$$

where $\alpha_i = (a_{i1}, \ldots, a_{id}) \in \mathbb{N}^d$ and $c_i \in \mathbb{R} \cup \{-\infty\}, i = 1, \ldots, r$.

TROPICAL POLYNOMIAL

 $1 \oplus 2x^3 \oplus 2y^3 \oplus 3xy = \max\{1, 2+3x, 2+3y, 3+x+y\}$, tropical polynomials are convex piecewise linear functions with integer slopes

TROPICAL DIVISION

► Tropical negative power x⁻ⁿ = (-x)ⁿ; it follows that tropical division is given by:

$$\frac{x}{y} \coloneqq x \oslash y \coloneqq x - y$$

► Tropical rational function is a (standard) difference of two tropical polynomials f(x) and g(x)

$$r(x)\coloneqq f(x)\oslash g(x)=f(x)-g(x)$$

► Tropical polynomial (or rational) map F : ℝ^d → ℝⁿ is a vector valued function where each component is tropical polynomial (or rational) function; F(x) = (f₁(x),..., f_n(x)) where f_i(x) is tropical polynomial (or rational function).

DEEP NEURAL NETWORKS

 Deep neural networks produce state of the art results across variety of applications in machine learning, especially in computer vision.

Classifier 🔶	Error rate ▲ (%)
30 Random Deep Leaning (RDL) models (10 CNNs, 10 RNNs, and 10 DNN)	0.18 ^[18]
Committee of 5 CNNs, 6-layer 784-50-100-500- 1000-10-10	0.21 ^[17]
Committee of 35 CNNs, 1-20-P-40-P-150-10	0.23 ^[8]
6-layer 784-50-100-500-1000-10-10	0.27 ^[16]
6-layer 784-40-80-500-1000-2000-10	0.31 ^[15]
6-layer 784-2500-2000-1500-1000-500-10	0.35 ^[23]

MNIST

Research Paper 🔶	Error rate (%)
ShakeDrop regularization ^[13]	2.31
Improved Regularization of Convolutional Neural Networks with Cutout ^[12]	2.56
Shake-Shake regularization ^[11]	2.86
Fractional Max-Pooling ^[10]	3.47
Neural Architecture Search with Reinforcement Learning ^[9]	3.65
Wide Residual Networks ^[8]	4.0
Densely Connected Convolutional Networks ^[7]	5.19
Convolutional Deep Belief Networks on CIFAR-10 ^[6]	21.1

CIFAR-10

NEURAL NETWORKS

Feedforward neural network with L layers, is given by the continuous function $\nu : \mathbb{R}^d \to \mathbb{R}^{n_L}$ of the form

$$\nu(x) \coloneqq \sigma^{(L)} \circ \rho^{(L)} \circ \dots \circ \sigma^{(1)} \circ \rho^{(1)}(x),$$

where $\rho^{(i)}: \mathbb{R}^{n_{i-1}} \to \mathbb{R}^{n_i}$ is affine preactivation

$$\rho^{(i)}(y) = A^{(i)}y + b^{(i)}$$

and $\sigma^{(i)}(x) \coloneqq \max(x, t_i)$ is activation function $t_i \in \mathbb{R}$ threshold. Write σ if $t_i = 0$.

$$\nu(x) = \sigma \left(A^{(L)} \sigma \left(A^{(L-1)} \sigma \left(\cdots \sigma \left(A^{(1)} x + b^{(1)} \right) + b^{(L-1)} \right) \right) + b^{(L)} \right)$$

Collectively $A^{(i)}, b^{(i)}, i = 1, ..., L$ form parameters of the network, and are determined during the training, usually by some form of SGD.

$$\nu(x) = \sigma \left(A^{(L)} \sigma \left(A^{(L-1)} \sigma \left(\cdots \sigma \left(A^{(1)} x + b^{(1)} \right) + b^{(L-1)} \right) \right) + b^{(L)} \right)$$

Classical result: Two-layer neural network ν , i.e., L = 2, can approximate any function $f \in L^p(\mathbb{R}^d)$, $1 \le p \le \infty$, arbitrary well in norm [HORNIK ET AL. 1989, HORNIK 1990],

 $\|f-\nu\|_p < \varepsilon.$

Doesn't explain deep neural networks: Why do we need more layers?

Why does nonsmooth activation $\sigma(x) = \max(0, x)$ work better than smooth activations like $\sigma(x) = \tanh(x)$ or $1/(1 - e^{-x})$?

Many other mysteries.

THEOREM (ZHANG-NAITZAT-L 2018)

The following families of functions are equivalent:

- 1. feedforward ReLU neural network with integer weights;
- 2. tropical rational maps;
- 3. continuous piecewise linear maps with integer coefficients.

Assume integer weights, i.e., $A^{(i)} \in \mathbb{Z}^{n_{i-1} \times n_i}$ from now on.

Mild assumption: real weights can be approximated arbitrarily closely by rational weights; since parameters may be scaled by any positive constant, may clear denominators to get integer weights.

NEURAL NETWORKS AND TROPICAL ALGEBRA

The proof of $1 \Longrightarrow 2$ is constructive.

PROPOSITION (ZHANG-NAITZAT-L 2018)

Assume the lth layer of neural net is given by a tropical rational map $\nu^{(l)}(x)=F^{(l)}(x)\oslash G^{(l)}(x),$ then

$$\nu^{(l+1)}(x) = F^{(l+1)}(x) \oslash G^{(l+1)}(x)$$

where $F^{(l+1)}(x)$ and $G^{(l+1)}(x)$ depend on $F^{(l)}(x), \ G^{(l)}(x).$ (Expressions later)

Goal: Study geometry of tropical polynomial maps $F^{(l)}(x)$ and $G^{(l)}(x)$.

Each layer in ReLU neural network is a tropical rational map

$$\nu^{(i+1)} = F^{(i+1)} - G^{(i+1)} = F^{(i+1)} \oslash G^{(i+1)}$$

and

$$\begin{split} F_{j}^{(i+1)} &= H_{j}^{(i+1)} \oplus G_{j}^{(i+1)}, \\ G_{j}^{(i+1)} &= \left[\bigotimes_{k=1}^{n_{i}} (F_{k}^{(i)})^{a_{jk,-}^{(i+1)}} \right] \odot \left[\bigotimes_{k=1}^{n_{i}} (G_{k}^{(i)})^{a_{jk,+}^{(i+1)}} \right], \\ H_{j}^{(i+1)} &= \left[\bigotimes_{k=1}^{n_{i}} (F_{k}^{(i)})^{a_{jk,+}^{(i+1)}} \right] \odot \left[\bigotimes_{k=1}^{n_{i}} (G_{k}^{(i)})^{a_{jk,-}^{(i+1)}} \right] \odot b_{j}^{(i+1)}. \end{split}$$

We use only the most basic notions from tropical algebraic geometry.

- ► Tropical analogue of roots of polynomials: tropical hypersurface.
 - tropical polynomial is "vanishing" at x if its value at x is attained by more than one monomials: $c_i x^{\alpha_i} = c_j x^{\alpha_j}$ for some $\alpha_i \neq \alpha_j$;
 - tropical hypersurface is the set of all x where tropical polynomial is "vanishing"

$$\mathcal{T}(f) \coloneqq \left\{ x \in \mathbb{R}^d : c_i x^{\alpha_i} = c_j x^{\alpha_j} = f(x) \text{ for some } \alpha_i \neq \alpha_j \right\};$$

- tropical hypersurface divides the domain of f(x) into convex cells, on each cell f(x) is linear;
- number of linear regions of f(x) is denoted by lin(f).
- Goal: Study hypersurfaces of tropical polynomials to obtain lin(f).
- Newton polygon and its dual subdivision will help.

DEFINITION (TROPICAL HYPERSURFACE) Given $f(x) = c_1 x^{\alpha_1} \oplus \cdots \oplus c_r x^{\alpha_r}$, the tropical hypersurface of f is $\mathcal{T}(f) \coloneqq \{ x \in \mathbb{R}^d : c_i x^{\alpha_i} = c_j x^{\alpha_j} = f(x) \text{ for some } \alpha_i \neq \alpha_j \}.$ Example: $\mathcal{T}(x \oplus y \oplus 0)$ r'Tropical hypersurface is the "corner locus" $\mathcal{T}(x \oplus y \oplus 0)$

NEWTON POLYGON

The Newton polygon of a *d*-variate tropical polynomial $f(x) = c_1 x^{\alpha_1} \oplus \cdots \oplus c_r x^{\alpha_r}$ is

$$\Delta(f) \coloneqq \operatorname{Conv}\{\alpha_i \in \mathbb{R}^d : c_i \neq -\infty, \ i = 1, \dots, r\}.$$

DUAL SUBDIVISION OF NEWTON POLYGON

Given a tropical polynomial $f(x) = c_1 x^{\alpha_1} \oplus \cdots \oplus c_r x^{\alpha_r}$

- 1. Lift each α_i from \mathbb{R}^d into \mathbb{R}^{d+1} : $\{(\alpha_i, c_i) \in \mathbb{R}^d \times \mathbb{R} : i = 1, \dots, r\}$
- 2. Take their convex hull

$$\mathcal{P}(f) \coloneqq \operatorname{Conv}\{(\alpha_i, c_i) \in \mathbb{R}^d \times \mathbb{R} : i = 1, \dots, r\}$$

3. Define $\pi: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$ by $\pi((\alpha, c)) = \alpha$. The dual subdivision is

$$\delta(f) \coloneqq \left\{ \pi(p) \subset \mathbb{R}^d : p \in \mathrm{UF}(\mathcal{P}(f)) \right\}$$

Example: $1 \oplus 2x^3 \oplus 2y^3 \oplus 3xy$

- Tropical hypersurface $\mathcal{T}(f)$ is dual to $\delta(f)$:
 - every vertex in $\delta(f)$ corresponds to a "cell" where f is linear;
 - $\ln(f) =$ number of vertices on the upper faces of $\mathcal{P}(f)$.
- Goal: Count the number of vertices in the upper faces of $\mathcal{P}(F^{\alpha})$.

 $1 \oplus 2x^3 \oplus 2y^3 \oplus 3xy$

 $\delta(f) \text{ dual subdivision} \overset{\mathcal{T}(f) \text{ tropical hypersurface}}{\overset{\mathcal{T}(f) \text{ tropical hypersurface}}{\overset{\mathcal{T}(f) \text{ tropical hypersurface}}}$

An immediate result:

PROPOSITION (ZHANG-NAITZAT-L 2018)

Let $\nu : \mathbb{R}^d \to \mathbb{R}$ be an *L*-layer neural network. Write $\nu = f \oslash g$ then

- (i) A decision boundary $\mathcal{B} = \{x \in \mathbb{R}^d : \nu(x) = c\}$ divides \mathbb{R}^d into at most $\ln(f)$ connected regions above c and at most $\ln(g)$ connected regions below c;
- (ii) The decision boundary is contained in the tropical hypersurface of the tropical polynomial $(c \odot g(x)) \oplus f(x)$, i.e.,

 $\mathcal{B} \subseteq \mathcal{T}((c \odot g) \oplus f).$

- Once the connection has been established we want to use results of tropical geometry to study neural network.
- One of the main objects of interest is "zeros" of tropical polynomials.
- We will demonstrate how we can use results on zeros of tropical polynomial to study neural networks.

Recall that:

$$\begin{split} F_{j}^{(i+1)} &= H_{j}^{(i+1)} \oplus G_{j}^{(i+1)}, \\ G_{j}^{(i+1)} &= \left[\bigotimes_{k=1}^{n} (F_{k}^{(i)})^{a_{jk,-}^{(i+1)}} \right] \odot \left[\bigotimes_{k=1}^{n} (G_{k}^{(i)})^{a_{jk,+}^{(i+1)}} \right], \\ H_{j}^{(i+1)} &= \left[\bigotimes_{k=1}^{n} (F_{k}^{(i)})^{a_{jk,+}^{(i+1)}} \right] \odot \left[\bigotimes_{k=1}^{n} (G_{k}^{(i)})^{a_{jk,-}^{(i+1)}} \right] \odot b_{j}^{(i+1)}. \end{split}$$

Question: What are $\mathcal{P}(F^{(i+1)})$ and $\mathcal{P}(G^{(i+1)})$?

TRANSFORMATION OF TROPICAL HYPERSURFACE

Let f, g be tropical polynomials.

$$\mathcal{P}(f^{a}) = a\mathcal{P}(f) \quad (\text{for any } a \in \mathbb{N})$$

$$(c_{1}x^{\alpha_{1}} \oplus \dots \oplus c_{r}x^{\alpha_{r}})^{a} = c_{1}x^{a\alpha_{1}} \oplus \dots \oplus c_{r}x^{a\alpha_{r}}$$

$$\mathcal{P}(f \oplus g) = \operatorname{Conv}(\mathcal{P}(f) \cup \mathcal{P}(g))$$

$$(c_{1}x^{\alpha_{1}} \oplus \dots \oplus c_{r}x^{\alpha_{r}}) \oplus (c'_{1}x^{\alpha'_{1}} \oplus \dots \oplus c'_{r}x^{\alpha'_{r}}) = c_{1}x^{a\alpha_{1}} \oplus \dots \oplus c_{r}x^{a\alpha_{r}} \oplus c'_{1}x^{\alpha'_{1}} \oplus \dots \oplus c'_{r}x^{\alpha'_{r}}$$

▶
$$\mathcal{P}(f \odot g) = \mathcal{P}(f) + \mathcal{P}(g)$$
, where "+" is Minkowski sum

$$P_1 + P_2 = \{x_1 + x_2 \in \mathbb{R}^d : x_1 \in P_1, x_2 \in P_2\}$$

Minkowski sum of line segments is called a zonotope

POLYTOPES ASSOCIATED WITH NEURAL NETWORK

• For the first layer,
$$v_j^{(1)} = F_j^{(1)} - G_j^{(1)}$$

 \blacktriangleright For the second layer, $v_j^{(2)} = F_j^{(2)} - G_j^{(2)}$

POLYTOPES ASSOCIATED WITH NEURAL NETWORK

Lemma (Zhang-Naitzat-L 2018)

Let $F_j^{(i)}$, $G_j^{(i)}$ be the tropical polynomials produced by the jth node in the ith layer, then

▶ for $i \ge 1$, $\mathcal{P}(G_j^{(i+1)})$ is weighted Minkowski sums of $\mathcal{P}(F_1^{(i)}), \ldots, \mathcal{P}(F_{n_i}^{(i)}), \mathcal{P}(G_1^{(i)}), \ldots, (G_{n_i}^{(i)})$, given by

$$\mathcal{P}(G_j^{(i+1)}) = \sum_{k=1}^{n_i} a_{jk,-}^{(i+1)} \mathcal{P}(F_k^{(i)}) + \sum_{k=1}^{n_i} a_{jk,+}^{(i+1)} \mathcal{P}(G_k^{(i)});$$

► for
$$i \ge 1$$
,
 $\mathcal{P}(F_j^{(i)}) = \operatorname{Conv}[\mathcal{P}(G_j^{(i)}) \cup \mathcal{P}(H_j^{(i)})].$

VERTICES ON UPPER FACES OF ZONOTOPES

THEOREM (GRITZMANN-STURMFELS)

Let P_1, \ldots, P_k be polytopes in \mathbb{R}^d and let m denote the total number of nonparallel edges of P_1, \ldots, P_k . Then the number of vertices of $P_1 + \cdots + P_k$ does not exceed

$$2\sum_{j=0}^{d-1} \binom{m-1}{j}.$$

COROLLARY (ZHANG-NAITZAT-L 2018)

Let $P \subset \mathbb{R}^{d+1}$ be a zonotope generated by n line segments. Then P has at most

$$\sum_{j=0}^{a} \binom{n}{j}$$

vertices on its upper faces.

Study of tropical hypersurfaces leads to the following result:

THEOREM (ZHANG-NAITZAT-L 2018)

Let $\nu : \mathbb{R}^d \to \mathbb{R}^{n_L}$ be an *L*-layer neural network with layers $\nu^{(l)} = F^{(l)} - G^{(l)}$ and let $n_l \ge d$ for all $l = 0, \ldots, L$, then

$$\ln(\nu^{(l+1)}) \le \ln(\nu^{(l)}) \cdot \sum_{i=0}^d \binom{n_{l+1}}{i}.$$

Note that $lin(\nu^{(0)}) = 1$.

Here lin(f) is the number of linear regions of f.

COROLLARY (RAGHU ET AL. 2017, ZHANG–NAITZAT–L 2018) Assume $n_i \ge d, i = 1, ..., L - 1$ and $n_L = 1$. The number of linear regions of an L-layer ReLU neural network does not exceed

$$\prod_{i=1}^{L-1} \sum_{j=0}^{d} \binom{n_i}{j} \sim \mathcal{O}(n^{d(L-1)}) \text{ when } n_1 = \dots = n_{L-1} = n.$$

This upper bound is (almost) tight [MONTUFAR ET AL. 2014, RAGHU ET AL. 2017].

SUMMARY

 A ReLU neural network with integer coefficients = tropical rational map

$$\nu(x) = f(x) \oslash g(x) \equiv f(x) - g(x).$$

- The geometry of two-layer ReLU networks is the geometry of zonotopes.
- The geometry of L-layer ReLU networks is the geometry of the polytopes that produce dual subdivision of Newton polygons of tropical polynomials.
- Tropical geometry allows us to count the number of linear regions of ReLU networks.
- Deeper networks have exponentially more linear regions than shallow networks.