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OVERVIEW

> A large class of neural networks and
are equivalent:

f(z) _ ap + a1x + asx® + - + apa”
g(x) by + by + bya® + -« + by

A new way to look at and study neural networks.

> We use our approach to show that deep neural networks
are exponentially more expressive than shallow networks.



OVERVIEW

: a complex classification problem requires decision bound-
ary with

A simple decision boundary. A complex decision boundary.
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TROPICAL SEMIRING

- T = (RU{-o0},8,0):
r @y = max{x,y} (tropical addition)
TOQYy=x+y (tropical multiplication)

» —oo is the additive identity: —oo @ z = max{—o0,z} = z.
» 0 is the multiplicative identity: 0 ©x =04z = z.
(i.e., no additive inverse) but historically called

a semiring.

» Isomorphic alternative: min in place of max, +oo in place of —o0

» Many algebraic objects and notions generalize to tropical settings
(e.g., matrices, polynomials, tensors, rank, determinant, degree, etc)
but interpretation changes.

> : T in place of C in algebraic
geometry (roughly).

» Provides fresh perspectives and new powerful techniques
[MACLAGAN-STURMFELS 2015].



EXAMPLES

> Gromov—Witten invariants can be found
tropically [MIKHALKIN 2005]
> AeZ" beZ}, c e R" (assume

A"l =al and b"1 = ma),
maximize ¢’z subject to Az =b, z € Z}.

Solution is coefficient of monomial yll’l ® y32 ® - ©ylm in dth
tropical power of

Cl@y?ll ®y521®Qyz{nl@@CnQyilanngn@@y;lnmn

> Floyd's algorithm for shortest path in weighted
digraph G = tropical power of adjacency matrix Ag € R™*", i.e.,
APM = Ag ® Ag ® -+ ® Ag. Hungarian assignment method =
tropical Gaussian elimination for computing tropical determinant,

tropdet(X) = @ween Tin(1) © Tox(2) @ O Tpr(n)s

x;; = cost of assigning job 7 to worker j.



TROPICAL POWER

> n €N,

=" = 0---0r=n-2
S ———

n times

where - is standard multiplication.
> ce RUu{—o0},a; €N,

cax®=cOr' 0P O Oay!

where o = (ay, ... ,aq) € N%.

> Tropical sum of tropical monomials

fx)=cz™ & & ca®

where a; = (a;1,...,a;q) € N*and ¢; e RU{~o00}, i =1,...



TROPICAL POLYNOMIAL

19223 ®2y3 @32y = max{1,2+3x, 2+3y, 3+x+y}, tropical polynomials
are convex piecewise linear functions with integer slopes

S
‘\\\“‘\\ 150
e P retirs
TR
I I e
RS




TROPICAL DIVISION

> x™" = (—z)"; it follows that
is given by:

T
—=rQyYy=r—y
)

> is a (standard) difference of two tropical
polynomials f(z) and g(x)

r(z) = f(x) @ g(z) = f(z) - g(x)

» Tropical polynomial (or rational) F:R? 5 R"is a
where each component is tropical polynomial (or
rational) function; F'(z) = (fi(z),..., fu(x)) where f;i(x) is tropical
polynomial (or rational function).



DEEP NEURAL NETWORKS

» Deep neural networks produce state of the art results across variety
of applications in machine learning, especially in computer vision.

Error Error
Classifier 4 rate - ReseachiEapey 7 rate (%) -
o
(%) ShakeDrop regularization!'?] 2.31
€0 Rt (Reep Lemiliy (REL)med =D 0.18(18! Improved Regularization of Convolutional Neural
CNNs, 10 RNNs, and 10 DNN) 2.56

Networks with Cutout!'?]
Committee of 5 CNNs, 6-layer 784-50-100-500-

0.210171 Shake-Shake regularization!'"] 2.86
1000-10-10
Fractional Max-Pooling!'?] 3.47
Committee of 35 CNNs, 1-20-P-40-P-150-10 0236 Neural Architecture Search with Reinforcement a6
Learning!®! ’
6-layer 784-50-100-500-1000-10-10 0.27010 Wide Residual Networks!®! 4.0
Densely Connected Convolutional Networksl’] 5.19
6-layer 784-40-80-500-1000-2000-10 0.3101%
Eer Convolutional Deep Belief Networks on CIFAR-106] | 21.1
6-layer 784-2500-2000-1500-1000-500-10 0.35%31

MNIST CIFAR-10



NEURAL NETWORKS
Feedforward neural network with L , is given by the continuous
function v : R? — R™ of the form
v(z) = oo pBo...ogcWo p(l)(x),
where p() : R%-1 — R™ s affine
pD(y) = AWy + p@

and ¢ () :== max(z,t;) is function ¢; € R threshold. Write
oift; =0.

(@) = o (A(L)a (ATs ( o (AW + b<1>) n b(H))) +50)

Collectively A® b § = 1,...L form of the network, and
are determined during the training, usually by some form of SGD.



v(z) =0 (A(L)a (A(L—l)a ( . (A(l)x + b(l)) + b(L—1)>) + b(L)>

. Hidden Hidden i
! layer (1) layer (1 +1) !
! (1G] b

i+t
- :
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D) 1) ) o D) g 1) () e i
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WHY NEURAL NETWORKS?

Classical result: Two-layer neural network v, i.e., L = 2,
f e LP(R%), 1 < p < oo, arbitrary well in norm [HORNIK
ET AL. 1989, HORNIK 1990],

If = vy <e

Doesn’t explain deep neural networks: Why do we need more layers?

Why does nonsmooth activation o(z) = max(0,x) work better than
smooth activations like o(z) = tanh(z) or 1/(1 —e™*)?

Many other mysteries.



NEURAL NETWORKS AND TROPICAL ALGEBRA

THEOREM (ZHANG—NAITZAT-L 2018)
The following families of functions are equivalent:
1. feedforward RelLU neural network with integer weights;
2. tropical rational maps;

3. continuous piecewise linear maps with integer coefficients.
Assume integer weights, i.e., AW ¢ 7Zni-1Xni from now on.
Mild assumption: real weights can be approximated arbitrarily closely by

rational weights; since parameters may be scaled by any positive constant,
may clear denominators to get integer weights.



NEURAL NETWORKS AND TROPICAL ALGEBRA

The proof of 1 = 2 is constructive.

PROPOSITION (ZHANG-NAITZAT-L 2018)

Assume the lth layer of neural net is given by a tropical rational map
v (z) = FO(z) @ GO (x), then

IJ(H_l)(.r) _ F(l+1)($) %) G(l+1)(.1')

where FH1) (z) and G4+ () depend on FO(z), G (x). (Expressions
later)

Study geometry of tropical polynomial maps F'")(z) and GO (z).



TROPICAL GEOMETRY OF NEURAL NETWORK

Each layer in ReLU neural network is a tropical rational map

YD) = plitl) _ qli+l) — plitl) o GlitD)

and

F(H‘l) H(H‘l) oy G(H‘l)

J
G(z+1 _ [ . ;Z;:i)] |:®(Glgz))a§?j-)]
k=1 k=1
i QU+ i iy (1) ;
H(H—l [ G+ ] |:©(Gl(€z))ajk,_ ] o) bg-Z—H)-
k=1 k=1



TROPICAL HYPERSURFACE

We use only the most basic notions from tropical algebraic geometry.

» Tropical analogue of roots of polynomials:

>

tropical polynomial is at x if its value at x is attained by
more than one monomials: ¢;z%" = c;x%/ for some a; # aj;

is the set of all x where tropical polynomial is
“vanishing”

T(f) = {z € R : a® = c;a% = f(x) for some a; # a; };

tropical hypersurface divides the domain of f(z) into ,
on each cell f(x) is ;
number of of f(x) is denoted by

. Study hypersurfaces of tropical polynomials to obtain lin(f).
and its will help.



Given f(z) = c1z™ @ -+ @ c,x®", the tropical hypersurface of f is

T(f) = {z € RY: c;a® = ¢;z™ = f(x) for some o; # a;}.

Example: T(z @y & 0)

Tropical hypersurface is the “corner locus”

Txdy®0)

18/31



NEWTON POLYGON

The Newton polygon of a d-variate tropical polynomial f(x) = cjz® &
< D ez s

A(f) = Conv{a; €R?: ¢; # —00,i=1,...,r}
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DUAL SUBDIVISION OF NEWTON POLYGON

Given a tropical polynomial f(z) = cijz® & - - - @ ¢z

1. Lift each ; from R? into R {(a,¢;) eREXR:i=1,...

2. Take their

P(f) = Conv{(as,¢;) ERIxR:i=1,...,r}

3. Define 7 : R xR — R? by 7((a, ¢)) = av.

5(f) = {m(p) CR:p e UF(P(f))}




DUAL SUBDIVISION AND TROPICAL HYPERSURFACE

» Tropical hypersurface 7(f) is dual to 6(f):

— every in §(f) corresponds to a
— lin(f) = number of vertices on the of P(f).
> Count the number of vertices in the upper faces of P(F'“).

1®22% @ 2y° @ 3ay

T (f) tropical hypersurface
5(f) dual subdivision -




TROPICAL HYPERSURFACE AND NEURAL NETWORKS

An immediate result:

PROPOSITION (ZHANG-NAITZAT-L 2018)
Let v : R* — R be an L-layer neural network. Write then
(i) A decision boundary B = {x € R?: v(z) = c} divides R? into at
most lin(f) connected regions above ¢ and at most lin(g)
connected regions below c;

(ii) The decision boundary is contained in the tropical hypersurface of
the tropical polynomial (¢ ® g(z)) ® f(z), i.e.,

BCT(cog)a®f).



TROPICAL HYPERSURFACE AND NEURAL NETWORKS

» Once the connection has been established we want to use results of
tropical geometry to study neural network.

» One of the main objects of interest is “zeros” of tropical
polynomials.

» We will demonstrate how we can use results on zeros of tropical
polynomial to study neural networks.



TROPICAL GEOMETRY OF NEURAL NETWORKS

Recall that:

F('L+1) H(Prl) D G(lJrl)

G(H—l _ [@ (z+1>] 5 [@(G;(g)) 5%)]
k=1 k=1
n (1 ) n (7, )
(H—l [@ mﬂ] . [Q(G(z)) 7k+i:| . b§1+1)

What are P(FU+1) and P(G+D)?



TRANSFORMATION OF TROPICAL HYPERSURFACE

Let f, g be tropical polynomials.
» P(f*) =aP(f) (foranya€N)
> (clxo‘l D---P CT(EO‘")G =12 P - B
> P(f ® g) = Conv(P(f) UP(9))
> (@r™ @ ©ea) © (i @ @t =
ATt @ P extr M P Bl

» P(f®©g)=P(f)+ P(g), where “+" is Minkowski sum
P+ Py ={z1 + z2 ERd:JJl € P,x9 € P}

» Minkowski sum of line segments is called a

L -



POLYTOPES ASSOCIATED WITH NEURAL NETWORK

» For the first layer, vj(l) = Fj(l) — G’g-l)

f | P(f)
G;l) Of_, (zx)" ﬁ), point in RI+!
H](l) [@k @) i +] ® b( )| point in R+
Fj(l) H(1 ) G(l) line segment in RI+!
» For the second layer, v( ) = j( ) G;Q)
f \ P(f)
G§2) _ [Om (F<1)) } 0 [ 21 1(G§€1))a§?+} zonotope

HJ(Q) [ i (F(l)) ] O] [ L (G<1 L ] @b( ) zonotope
F(z) H<2) &b G(Q) convex hull of two zonotopes



POLYTOPES ASSOCIATED WITH NEURAL NETWORK

LEMMA (ZHANG-NAITZAT-L 2018)

Let Fj(i), Gg-i) be the tropical polynomials produced by the jth node in
the ith layer, then

» fori>1, P(Gg.iﬂ)) is weighted Minkowski sums of
PED), . PED), PGY),... (GY), given by

(1)) N (i41) () (+1)p
P(Gj ) - Z g — F + Z @i, +
P

» fori>1, A , .
P(FY) = Conv[P(GY Y UP(H)).



VERTICES ON UPPER FACES OF ZONOTOPES

THEOREM (GRITZMANN—STURMFELS)

Let Py,..., P, be polytopes in R? and let m denote the total number of
nonparallel edges of Py, ..., P,. Then the number of vertices of
P, + .-+ P, does not exceed

2?%1(7”;1).

COROLLARY (ZHANG—NAITZAT-L 2018)
Let P C R¥! be a zonotope generated by n line segments. Then P has

> (1)

vertices on its upper faces.



LINEAR REGIONS OF THE NEURAL NETWORK

Study of tropical hypersurfaces leads to the following result:

THEOREM (ZHANG—NAITZAT-L 2018)

Let v : RY — R be an L-layer neural network with layers v() = F() —
GW and let n; > d for alll =0, ..., L, then

d
lin(v*1) < lin(v Z (an)

Note that lin(v(©) =1

Here lin(f) is the number of linear regions of f.



NUMBER OF LINEAR REGIONS

COROLLARY (RAGHU ET AL. 2017, ZHANG-NAITZAT-L 2018)

Assumen; > d,i=1,...,L —1 and ny, = 1. The number of linear
regions of an L-layer ReLU neural network does not exceed

L-1d /.
HZ<Z>~ piL— 1))Whenn1:---:nL_1:n.

This upper bound is (almost) tight [MONTUFAR ET AL. 2014, RAGHU
ET AL. 2017].



SUMMARY

v

A RelLU neural network with integer coefficients = tropical rational
map
v(z) = f(z) @ g(x) = f(z) — g(x).

» The geometry of two-layer ReLU networks is the geometry of

zonotopes.
» The geometry of L-layer ReLU networks is the geometry of the
polytopes that produce dual subdivision of Newton polygons of
tropical polynomials.

» Tropical geometry allows us to count the number of linear regions of
RelLU networks.

» Deeper networks have exponentially more linear regions than shallow
networks.



