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Overview

I Result I. A large class of neural networks and tropical rational
functions are equivalent:

σ(L) ◦ ρ(L) ◦ · · · ◦ σ(1) ◦ ρ(1)(x) ⇐⇒
f(x)
g(x) = a0 + a1x+ a2x

2 + · · ·+ anx
n

b0 + b1x+ b2x2 + · · ·+ bmxm︸ ︷︷ ︸
multivariate, over tropical semiring

A new way to look at and study neural networks.

I Result II. We use our approach to show that deep neural networks
are exponentially more expressive than shallow networks.
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Overview

ReLU network: a complex classification problem requires decision bound-
ary with many linear pieces

A simple decision boundary. A complex decision boundary.
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Overview

Tropical Algebra  
Tropical Geometry
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Tropical semiring

I Tropical semiring T := (R ∪ {−∞},⊕,�):

x⊕ y := max{x, y} (tropical addition)
x� y := x+ y (tropical multiplication)

I −∞ is the additive identity: −∞⊕ x = max{−∞, x} = x.
I 0 is the multiplicative identity: 0� x = 0 + x = x.
I Actually a semifield (i.e., no additive inverse) but historically called

a semiring.
I Isomorphic alternative: min in place of max, +∞ in place of −∞
I Many algebraic objects and notions generalize to tropical settings

(e.g., matrices, polynomials, tensors, rank, determinant, degree, etc)
but interpretation changes.

I Tropical algebraic geometry: T in place of C in algebraic
geometry (roughly).

I Provides fresh perspectives and new powerful techniques
[Maclagan–Sturmfels 2015].
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Examples

I Symplectic Geometry. Gromov–Witten invariants can be found
tropically [Mikhalkin 2005]

I Integer Programming. A ∈ Zm×n+ , b ∈ Zm+ , c ∈ Rn (assume
AT1 = a1 and bT1 = ma),

maximize cTx subject to Ax = b, x ∈ Zn+.

Solution is coefficient of monomial yb1
1 � y

b2
2 � · · · � ybm

m in dth
tropical power of

c1 � ya11
1 � ya21

2 � · · · � yam1
m ⊕ · · · ⊕ cn � ya1n

1 � ya2n
2 � · · · � yamn

m .

I Computer Science. Floyd’s algorithm for shortest path in weighted
digraph G = tropical power of adjacency matrix AG ∈ Rn×n, i.e.,
A�nG = AG �AG � · · · �AG. Hungarian assignment method =
tropical Gaussian elimination for computing tropical determinant,

tropdet(X) =
⊕

π∈Sn
x1π(1) � x2π(2) � · · · � xnπ(n),

xij = cost of assigning job i to worker j.



Dr
aft

Tropical Geometry of Deep Neural Networks • Liwen Zhang • Gregory Naitzat • Lek-Heng Lim 

7/31

Tropical power

I Tropical power. n ∈ N,

xn := x�n := x� · · · � x︸ ︷︷ ︸
n times

= n · x

where · is standard multiplication.
I Tropical monomial. c ∈ R ∪ {−∞}, ai ∈ N,

cxα := c� xa1
1 � x

a2
2 � · · · � x

ad
d

where α = (a1, . . . , ad) ∈ Nd.
I Tropical polynomial. Tropical sum of tropical monomials

f(x) = c1x
α1 ⊕ · · · ⊕ crxαr

where αi = (ai1, . . . , aid) ∈ Nd and ci ∈ R ∪ {−∞}, i = 1, . . . , r.
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Tropical polynomial
1⊕2x3⊕2y3⊕3xy = max{1, 2+3x, 2+3y, 3+x+y}, tropical polynomials
are convex piecewise linear functions with integer slopes
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Tropical division

I Tropical negative power x−n = (−x)n; it follows that tropical
division is given by:

x

y
:= x� y := x− y

I Tropical rational function is a (standard) difference of two tropical
polynomials f(x) and g(x)

r(x) := f(x)� g(x) = f(x)− g(x)

I Tropical polynomial (or rational) map F : Rd → Rn is a vector
valued function where each component is tropical polynomial (or
rational) function; F (x) = (f1(x), . . . , fn(x)) where fi(x) is tropical
polynomial (or rational function).
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Deep neural networks

I Deep neural networks produce state of the art results across variety
of applications in machine learning, especially in computer vision.
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Neural networks

Feedforward neural network with L layers, is given by the continuous
function ν : Rd → RnL of the form

ν(x) := σ(L) ◦ ρ(L) ◦ · · · ◦ σ(1) ◦ ρ(1)(x),

where ρ(i) : Rni−1 → Rni is affine preactivation

ρ(i)(y) = A(i)y + b(i)

and σ(i)(x) := max(x, ti) is activation function ti ∈ R threshold. Write
σ if ti = 0.

ν(x) = σ
(
A(L)σ

(
A(L−1)σ

(
· · ·σ

(
A(1)x+ b(1)

)
+ b(L−1)

))
+ b(L)

)
Collectively A(i), b(i), i = 1, . . . L form parameters of the network, and
are determined during the training, usually by some form of SGD.
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Neural networks

ν(x) = σ
(
A(L)σ

(
A(L−1)σ

(
· · ·σ

(
A(1)x+ b(1)

)
+ b(L−1)

))
+ b(L)

)
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Why neural networks?

Classical result: Two-layer neural network ν, i.e., L = 2, can approximate
any function f ∈ Lp(Rd), 1 ≤ p ≤ ∞, arbitrary well in norm [Hornik
et al. 1989, Hornik 1990],

‖f − ν‖p < ε.

Doesn’t explain deep neural networks: Why do we need more layers?

Why does nonsmooth activation σ(x) = max(0, x) work better than
smooth activations like σ(x) = tanh(x) or 1/(1− e−x)?

Many other mysteries.
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Neural networks and tropical algebra

Theorem (Zhang–Naitzat–L 2018)
The following families of functions are equivalent:
1. feedforward ReLU neural network with integer weights;
2. tropical rational maps;
3. continuous piecewise linear maps with integer coefficients.

Assume integer weights, i.e., A(i) ∈ Zni−1×ni from now on.

Mild assumption: real weights can be approximated arbitrarily closely by
rational weights; since parameters may be scaled by any positive constant,
may clear denominators to get integer weights.
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Neural networks and tropical algebra

The proof of 1 =⇒ 2 is constructive.

Proposition (Zhang–Naitzat–L 2018)
Assume the lth layer of neural net is given by a tropical rational map
ν(l)(x) = F (l)(x)�G(l)(x), then

ν(l+1)(x) = F (l+1)(x)�G(l+1)(x)

where F (l+1)(x) and G(l+1)(x) depend on F (l)(x), G(l)(x). (Expressions
later)

Goal: Study geometry of tropical polynomial maps F (l)(x) and G(l)(x).
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Tropical geometry of neural network

Each layer in ReLU neural network is a tropical rational map

ν(i+1) = F (i+1) −G(i+1) = F (i+1) �G(i+1)

and

F
(i+1)
j = H

(i+1)
j ⊕G(i+1)

j ,

G
(i+1)
j =

[ ni⊙
k=1

(F (i)
k )a

(i+1)
jk,−

]
�
[ ni⊙
k=1

(G(i)
k )a

(i+1)
jk,+

]
,

H
(i+1)
j =

[ ni⊙
k=1

(F (i)
k )a

(i+1)
jk,+

]
�
[ ni⊙
k=1

(G(i)
k )a

(i+1)
jk,−

]
� b(i+1)

j .
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Tropical hypersurface

We use only the most basic notions from tropical algebraic geometry.
I Tropical analogue of roots of polynomials: tropical hypersurface.

− tropical polynomial is “vanishing” at x if its value at x is attained by
more than one monomials: cixαi = cjx

αj for some αi 6= αj ;
− tropical hypersurface is the set of all x where tropical polynomial is

“vanishing”

T (f) :=
{
x ∈ Rd : cixαi = cjx

αj = f(x) for some αi 6= αj
}

;

− tropical hypersurface divides the domain of f(x) into convex cells,
on each cell f(x) is linear;

− number of linear regions of f(x) is denoted by lin(f).

I Goal: Study hypersurfaces of tropical polynomials to obtain lin(f).
I Newton polygon and its dual subdivision will help.
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Tropical hypersurface

Definition (Tropical Hypersurface)
Given f(x) = c1x

α1 ⊕ · · · ⊕ crxαr , the tropical hypersurface of f is

T (f) :=
{
x ∈ Rd : cixαi = cjx

αj = f(x) for some αi 6= αj
}
.

Example: T (x⊕ y ⊕ 0)

x′

y′

x

y

Tropical hypersurface is the “corner locus” T (x⊕ y ⊕ 0)
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Newton polygon

The Newton polygon of a d-variate tropical polynomial f(x) = c1x
α1 ⊕

· · · ⊕ crxαr is

∆(f) := Conv
{
αi ∈ Rd : ci 6= −∞, i = 1, . . . , r

}
.

(0, 0)

(0, 3)

(3, 0)

(1, 1)
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Dual subdivision of Newton polygon

Given a tropical polynomial f(x) = c1x
α1 ⊕ · · · ⊕ crxαr

1. Lift each αi from Rd into Rd+1: {(αi, ci) ∈ Rd × R : i = 1, . . . , r}
2. Take their convex hull

P(f) := Conv{(αi, ci) ∈ Rd × R : i = 1, . . . , r}

3. Define π : Rd×R→ Rd by π((α, c)) = α. The dual subdivision is

δ(f) :=
{
π(p) ⊂ Rd : p ∈ UF

(
P(f)

)}
Example: 1⊕ 2x3 ⊕ 2y3 ⊕ 3xy

(0, 0, 1)

(3, 0, 2)

(0, 3, 2)
(1, 1, 3)
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Dual subdivision and tropical hypersurface

I Tropical hypersurface T (f) is dual to δ(f):
− every vertex in δ(f) corresponds to a “cell” where f is linear;
− lin(f) = number of vertices on the upper faces of P(f).

I Goal: Count the number of vertices in the upper faces of P(Fα).

1⊕ 2x3 ⊕ 2y3 ⊕ 3xy

δ(f ) dual subdivision
T (f ) tropical hypersurface
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Tropical hypersurface and neural networks

An immediate result:

Proposition (Zhang–Naitzat–L 2018)
Let ν : Rd → R be an L-layer neural network. Write ν = f � g then

(i) A decision boundary B = {x ∈ Rd : ν(x) = c} divides Rd into at
most lin(f) connected regions above c and at most lin(g)
connected regions below c;

(ii) The decision boundary is contained in the tropical hypersurface of
the tropical polynomial (c� g(x))⊕ f(x), i.e.,

B ⊆ T ((c� g)⊕ f).
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Tropical hypersurface and neural networks

I Once the connection has been established we want to use results of
tropical geometry to study neural network.

I One of the main objects of interest is “zeros” of tropical
polynomials.

I We will demonstrate how we can use results on zeros of tropical
polynomial to study neural networks.
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Tropical geometry of neural networks

Recall that:

F
(i+1)
j = H

(i+1)
j ⊕G(i+1)

j ,

G
(i+1)
j =

[ n⊙
k=1

(F (i)
k )a

(i+1)
jk,−

]
�
[ n⊙
k=1

(G(i)
k )a

(i+1)
jk,+

]
,

H
(i+1)
j =

[ n⊙
k=1

(F (i)
k )a

(i+1)
jk,+

]
�
[ n⊙
k=1

(G(i)
k )a

(i+1)
jk,−

]
� b(i+1)

j .

Question: What are P(F (i+1)) and P(G(i+1))?



Dr
aft

Tropical Geometry of Deep Neural Networks • Liwen Zhang • Gregory Naitzat • Lek-Heng Lim 

25/31

Transformation of tropical hypersurface

Let f , g be tropical polynomials.
I P(fa) = aP(f) (for any a ∈ N)

I (c1x
α1 ⊕ · · · ⊕ crxαr )a = c1x

aα1 ⊕ · · · ⊕ crxaαr

I P(f ⊕ g) = Conv(P(f) ∪ P(g))
I (c1x

α1 ⊕ · · · ⊕ crxαr )⊕ (c′
1x
α′1 ⊕ · · · ⊕ c′

rx
α′r ) =

c1x
aα1 ⊕ · · · ⊕ crxaαr ⊕ c′

1x
α′1 ⊕ · · · ⊕ c′

rx
α′r

I P(f � g) = P(f) + P(g), where “+” is Minkowski sum

P1 + P2 = {x1 + x2 ∈ Rd : x1 ∈ P1, x2 ∈ P2}

I Minkowski sum of line segments is called a zonotope

+ + =
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Polytopes associated with neural network

I For the first layer, v(1)
j = F

(1)
j −G(1)

j

f P(f)

G
(1)
j =

⊙d
k=1(xk)a

(1)
jk,− point in Rd+1

H
(1)
j =

[⊙d
k=1(xk)a

(1)
jk,+
]
� b(1)

j point in Rd+1

F
(1)
j = H

(1)
j ⊕G

(1)
j line segment in Rd+1

I For the second layer, v(2)
j = F

(2)
j −G(2)

j

f P(f)

G
(2)
j =

[⊙n1
k=1(F (1)

k )a
(2)
jk,−
]
�
[⊙n1

k=1(G(1)
k )a

(2)
jk,+
]

zonotope

H
(2)
j =

[⊙n1
k=1(F (1)

k )a
(2)
jk,+
]
�
[⊙n1

k=1(G(1)
k )a

(2)
jk,−
]
� b(2)

j zonotope
F

(2)
j = H

(2)
j ⊕G

(2)
j convex hull of two zonotopes
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Polytopes associated with neural network

Lemma (Zhang–Naitzat–L 2018)
Let F (i)

j , G(i)
j be the tropical polynomials produced by the jth node in

the ith layer, then
I for i ≥ 1, P

(
G

(i+1)
j

)
is weighted Minkowski sums of

P
(
F

(i)
1
)
, . . . ,P

(
F

(i)
ni

)
,P
(
G

(i)
1
)
, . . . ,

(
G

(i)
ni

)
, given by

P
(
G

(i+1)
j

)
=

ni∑
k=1

a
(i+1)
jk,− P

(
F

(i)
k

)
+

ni∑
k=1

a
(i+1)
jk,+ P

(
G

(i)
k

)
;

I for i ≥ 1,
P
(
F

(i)
j

)
= Conv

[
P
(
G

(i)
j

)
∪ P

(
H

(i)
j

)]
.
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Vertices on upper faces of zonotopes

Theorem (Gritzmann–Sturmfels)
Let P1, . . . , Pk be polytopes in Rd and let m denote the total number of
nonparallel edges of P1, . . . , Pk. Then the number of vertices of
P1 + · · ·+ Pk does not exceed

2
d−1∑
j=0

(
m− 1
j

)
.

Corollary (Zhang–Naitzat–L 2018)
Let P ⊂ Rd+1 be a zonotope generated by n line segments. Then P has
at most

d∑
j=0

(
n

j

)

vertices on its upper faces.
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Linear regions of the neural network

Study of tropical hypersurfaces leads to the following result:

Theorem (Zhang–Naitzat–L 2018)
Let ν : Rd → RnL be an L-layer neural network with layers ν(l) = F (l) −
G(l) and let nl ≥ d for all l = 0, . . . , L, then

lin(ν(l+1)) ≤ lin(ν(l)) ·
d∑
i=0

(
nl+1
i

)
.

Note that lin(ν(0)) = 1.

Here lin(f) is the number of linear regions of f .
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Number of linear regions

Corollary (Raghu et al. 2017, Zhang–Naitzat–L 2018)
Assume ni ≥ d, i = 1, . . . , L− 1 and nL = 1. The number of linear
regions of an L-layer ReLU neural network does not exceed

L−1∏
i=1

d∑
j=0

(
ni
j

)
∼ O(nd(L−1)) when n1 = · · · = nL−1 = n.

This upper bound is (almost) tight [Montufar et al. 2014, Raghu
et al. 2017].
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Summary

I A ReLU neural network with integer coefficients = tropical rational
map

ν(x) = f(x)� g(x) ≡ f(x)− g(x).
I The geometry of two-layer ReLU networks is the geometry of

zonotopes.
I The geometry of L-layer ReLU networks is the geometry of the

polytopes that produce dual subdivision of Newton polygons of
tropical polynomials.

I Tropical geometry allows us to count the number of linear regions of
ReLU networks.

I Deeper networks have exponentially more linear regions than shallow
networks.


