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A Question Posed by Schubert

Given 4 generic lines in space, how many lines intersect all 4?
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Rephrasing with complex geometry

The question can be phrased as an intersection of algebraic varieties.

Replace a line in 3-space by a plane through the origin in 4-space.

Move to complex planes in C4.

Gr(2, 4) = {2-dimensional vector spaces in C4.}

Each line we started with is a point in Gr(2, 4).

Let Xi be the set of planes in C4 that intersect the ith red line. Then
Xi ⊂ Gr(2, 4).

Our question is answered by the number of points in

X1 ∩ X2 ∩ X3 ∩ X4.
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Flags (type A)

Definition

A flag on Cn is a sequence of vector spaces with increasing dimensions:

0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Cn,

with dimC Vi = i . The flag manifold Fl(n,C) is the collection of all flags.

Flags of type A are also realized as Gl(n,C)/B, where B consists of upper
triangular matrices.
More generally, for G a complex reductive Lie group and B a Borel
subgroup, G/B is called a flag variety. Note it has a complex structure
coming from G itself. We will also pick T ⊂ B a maximal torus in B. For
G = Gl(n,C) and B upper triangular matrices, T consists of diagonal
matrices with non-zero entries along the diagonal.
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Schubert varieties

Let W := N(T )/T , the normalizer of the torus mod the torus. This is a
finite group (and isomoprhic to Sn for Gl(n,C).) Schubert varieties are
defined by

Xw := BwB/B,

for each w ∈W . Similarly, there are varieties Xw := B−wB/B where B−
consists of lower triangular matrices (or an opposite Borel).
Schubert calculus is the study of intersection properties some special
subvarieties of Fl(n,C). . Specifically,

cwuv = [Xu] ∩ [Xv ] ∩ [Xw ]

is nonnegative integer if the varieties are the right dimension. So how can
we count it?
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A group action on Fl(n,C)

Let Cn ∼= C1 ⊕ · · · ⊕ Cn be given by a choice of basis. For
T ∼= S1 × · · · × S1, consider the action of T on Cn given by

(θ1, · · · , θn) · (z1, · · · , zn) = (e iθ1z1, · · · , e iθnzn).

Note that each summand is an eigenspace of the action.

For V a vector space, T · V is a vector space of the same dimension.

If V ⊂W , then T · V ⊂ T ·W .

Therefore, T acts on Fl(n,C).

The fixed points are coordinate planes. For each permutation σ of the
{1, · · · n}, the coordinate flag

0 ⊂ Cσ(1) ⊂ Cσ(1) ⊕ Cσ(2) ⊂ · · · ⊂ Cn

is fixed under the T -action.

The fixed points are in 1-1 correspondence with Sn, the permutation
group on n letters.
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What can be said about cwuv?

The same numbers can be obtained as structure constants for the
basis of Schubert varieties in the cohomology H∗(G/B). Let Sw
represent the cohomology class [Xw ].

SuSv =
∑
w∈W

cwuvSw .

Positive (combinatorial) formula known for these constants in the
case of Grassmannians. They are counted by Young tableaux.

Positive formulas are known for the general flag manifold in special
cases, i.e. for a subset of Weyl group elements u.

The structure constants count the number of times a irreducible
representation occurs in the tensor product of two other
representations.
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Generalizing the coefficients cwuv

In the equivariant cohomology H∗T (G/B), there is a basis given by
cohomology classes representing Xw , denoted by ST

w . Then

ST
u ST

v =
∑
w∈W

(cwuv )TST
w .

defines coefficients (cwuv )T ∈ H∗T (pt).

H∗T (pt) = Z[x1, . . . , xn]

These are also positive in an appropriate sense. With choosing a
Borel B, we also choose a set of positive roots. In this case,
∆+ = {xi − xj : i < j}. Then (cwuv )T can be written as a polynomial
in positive roots, with positive coefficients.

(cwuv )T (0) = cwuv
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Another generalization of cwuv

Equivariant K -theory! There are several prominent bases that people love.
And the notion of positivity changes accordingly.

Rebecca Goldin, George Mason University Some equivariant combinatorics of flag manifolds November 10, 2018 11 / 31



What is K -theory about?

Suppose V and W are vector spaces over C.

We “add” vector spaces: V ⊕W . The dimensions add.

We “multiply” vector spaces: V ⊗W . The dimensions multiply.

The 0-vector space is an additive identity. The one-dimensional vector
space is a multiplicative identity.

By formally introducing “subtraction,” the set of vector spaces (up to
isomorphism) form a ring, denoted K (pt).

Up to isomorphism, V and W are characterized by their dimension. It
follows that

K (pt) ∼= Z.

For an honest vector space, the correspondence is V 7→ dimV .
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What is K -theory about?

Suppose V and W are vector bundles over a smooth algebraic variety X .

We can form the direct sum of vector bundles: V ⊕W .

The 0-vector bundle is an additive identity. The trivial
one-dimensional vector bundle is a multiplicative identity

The problem is cancelation. we want to have additive inverses.
And in particular, if V ⊕W ∼= Z , then a correct definition for −V
must imply that W ∼= Z − V . However, V ⊕W ∼= Z and
V ⊕W ′ ∼= Z does not imply that W ∼= W ′.

Instead, we define [V ] as an equivalence class of stably isomorphic
vector bundles of the same dimension, i.e.

V ∼W ⇐⇒ V ⊕ Ck ∼= W ⊕ Ck for some k .
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Defining K -theory (topological)

V ∼W ⇐⇒ V ⊕ Ck ∼= W ⊕ Ck for some k . [V ] = {W | W ∼ V }
Introduce a formal difference of vector bundles,

V − V ′ ∼W −W ′ ⇐⇒ V ⊕W ′ ∼= W ⊕ V ′.

Note that V ⊕W ∼= V ⊕W ′ is equivalent to V −W ∼ V −W ′,
which resolves the problem with cancelation.
V − V ∼ 0 (the trivial dimension-0 vector bundle)
Define [V ] + [W ] := [V ⊕W ]. If [V ] = [V ′], then V ⊕Ck ∼= V ′⊕Ck ,
so V ⊕ Ck ⊕W ∼= V ′ ⊕ Ck ⊕W , and [V ⊕W ] = [V ′ ⊕W ].
Similarly, [V ]− [W ] := [V −W ] is well defined. If [V ] = [V ′], then
V ⊕ Ck ∼= V ′ ⊕ Ck , so V ⊕ Ck ⊕W ∼= V ′ ⊕ Ck ⊕W , so that
V −W ∼ V ′ −W , i.e. [V −W ] = [V ′ −W ].
Form the tensor product of vector bundles: V ⊗W , and define
[V ] · [W ] := [V ⊗W ]. If V ∼ V ′, then V ⊗W ∼ V ′ ⊗W .

The set of equivalence classes of vector bundles over X form a ring,
denoted K (X ).
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Defining K -theory (topological)
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What is equivariant K -theory about?

Suppose a group G acts on vector spaces V and W .

A vector space V with a group action is a representation of G .

The vector space V ⊕W has an induced group action.

The vector space V ⊗W has an induced group action.

The formal difference of vector spaces has an induced group action.

It follows that
KG (pt) ∼= R(G ),

the representation ring of G . A similar story allows us to form a ring
KG (X ) out of vector bundles over a smooth algebraic variety X with a G
action.
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T - Equivariant K -theory of a point

When G = T , an Abelian Lie group (such as S1, or more generally a
product of circles):

Each finite dimensional representation of T breaks into a direct sum
of irreducible representations.

An irreducible representation of T is one-dimensional.

An irreducible representation of T is characterized by its weight, an
element of the weight lattice of the dual t∗ of the Lie algebra t to T .
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T - Equivariant K -theory of a point

In the case that T = S1, the weight is simply an integer, indicating
how S1 spins each copy of C. For each θ ∈ S1 and z ∈ C, the action
given by θ · z = e inθz is weight n.

Let t indicate the weight 1 action of S1 on C. Then

KS1(pt) ∼= Z[t, t−1].

For example, the representation C⊕ C of S1 given by

θ · (z1, z2) = (e2iθz1, e
−3iθz2)

is indicated in the ring by the element t2 + t−3.

By picking a splitting of T ∼= S1 · · · S1,

KT (pt) = Z[t1, · · · tn, t−1
1 , · · · t−1

n ],

the Laurent polynomials in n-variables.
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T - Equivariant K -theory of the flag manifold, G/B

Let (G/B)T denote the fixed points of T on G/B. The inclusion
(G/B)T ↪→ G/B induces in injection

KT (G/B) ↪→ KT ((G/B)T )

=
⊕
W

KT (pt)

=
⊕
W

Z [t1, · · · tn, t−1
1 , · · · t−1

n ].

There’s an algebraic description of the image of this map. For any class
β ∈ KT (Fl(n,C)) and fixed point w ∈ (Fl(n,C)T ), we write β|w to
indicate the restriction of β to the fixed point w .
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Why is this so awesome?

We can multiply KT (G/B) classes by multiplying the corresponding
Laurent polynomials at each point!

1− t3t
−1
1 1− t3t

−1
1

0

0
1− t2t

−1
1

1− t2t
−1
1

1− t3t
−1
1 1− t3t

−1
2

1− t3t
−1
2

00

1− t3t
−1
1

(1− t3t
−1
1 )2 (1− t3t

−1
1 )(1− t3t

−1
2 )

0

00

(1− t3t
−1
2 )(1− t3t

−1
1 )
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A geometric story

Theorem

Fact: For each w ∈ Sn, there is a class ξw ∈ KT (G/B) with ξw |v 6= 0 if
and only if v ≥ w in the Bruhat order.

(Additional properties are required so that these classes are uniquely
defined.) These classes are dual to structure sheafs on Schubert varieties

Xw := BwB/B

Theorem

Fact: The set of classes {ξw} over all w ∈ Sn form a basis of the ring as a
module over KT (pt).
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A geometric story

Since the elements {ξw} form a basis, the coefficients pwuv ∈ KT (pt) are
defined by the relationship

ξuξv =
∑
w∈Sn

pwuvξw ,

then pwuv have can be written in Laurent polynomials with coefficient that
have a predictable sign.
In particular, Bill Graham conjectured that

(−1)`(u)+`(v)+`(w)pwuv ∈ Z+[e−β − 1]β∈∆+

and the statement was subsequently proved by Anderson-Griffeths-Miller.
This phenomenon is called positivity.
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Schubert basis: a simple example

A simplest case: flags on C2 with an S1 action on it (weight 2).

The ξw basis:
The class ξ1

1

1

The class ξ[12]

1− t−2

0

In particular, (ξ[12])
2 =

(1− t−2)2

0

= (1− t−2) ·

1− t−2

0(
ξ[12]

)2
= (1− t−2)ξ[12] = −(t−2 − 1))ξ[21],

meaning

p
[12]
[12],[12] = (−1)`([21])+`([21])+`([21])(t−2 − 1),

so it satisfies the described positivity.
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More on the K -theory classes ξu

We may define basis {ξv}v∈W is dual to the basis given by
[OXw ] ∈ KT (G/B), under a natural pairing (push-forward to a point).

It turns out that ξv = [OXv (∂Xv )], the sheaf of functions on Xv that
vanish on the boundary.

Theorem

Fix v ,w ∈W. Let W be a word with
∏

W = w. Then

ξv |w =
∑

V⊆W ,
∏̃

V=v

∑
R:V⊆R⊆W

(−1)|R\V |
∏
t∈R

(1− e(
∏

j∈W ,j≤t rj )αt )
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Schubert basis for flags on C3

Opposite Schubert Varieties, indexed by w ∈ S3. Here eαi = exi−xi+1=ti t
−1
i+1

ξ1
1 1

1
11

1

ξ[213]

(1− t3t
−1
1 )−

(1− t3t
−1
1 )(1− t3t

−1
2 )

(1− t3t
−1
1 )− (1− t3t

−1
1 )(1− t3t

−1
2 )

−(1− t3t
−1
1 )(1− t3t

−1
2 )

+(1− t2t
−1
1 )(1− t3t

−1
1 )(1− t3t

−1
2 )

0

01− t2t
−1
1

(1− t2t
−1
1 )− (1− t2t

−1
1 )(1− t3t

−1
2 )

ξ[231]
(1− t3t

−1
1 )(1− t2t

−1
1 )

0

0

00

(1− t3t
−1
1 )(1− t2t

−1
1 )

ξ[132]

(1− t3t
−1
1 )− (1− t3t

−1
2 )(1− t3t

−1
1 )− (1− t2t

−1
1 )(1− t3t

−1
1 )

+(1− t2t
−1
1 )(1− t3t

−1
2 )(1− t3t

−1
1 )

(1− t3t
−1
2 )

−(1− t3t
−1
2 )(1− t3t

−1
1 )

1− t3t
−1
2

00

(1− t3t
−1
1 )− (1− t2t

−1
1 )(1− t3t

−1
1 )

ξ[321]

(1− t3t
−1
1 )(1− t3t

−2
2 )(1− t2t

−1
1 ) 0

0
00

0

ξ[312]

(1− t3t
−1
1 )(1− t3t

−1
2 ) (1− t3t

−1
1 )(1− t3t

−1
2 )

0

00

0
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A geometric story

There are no complete positive formulas for the general case.
For a simple reflection rj = (j , j + 1), let δj be the K -theoretic isobaric
divided difference operator given by

δj f :=
(f − e−αj rj · f )

(1− e−αj )
.

Theorem (G-Knutson)

Let the equivariant K-theoretic intersection numbers pwuv be defined by
ξvξw =

∑
u∈W puvwξu. For any reduced word U for u,

puvw =
∑

V⊂U,W⊂U,
∏̃

V=v ,
∏̃

W=w

(∏
U

(ê−αi )i∈V∩W )(−δi )[i∈V̄∩W̄ ]

̂(1− e−αi )
[i∈V∩W ]

r
[i∈V∪W ]
i

)
· 1,
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More on coefficients

puvw =
∑

V⊂U,W⊂U,
∏̃

V=v ,
∏̃

W=w

(∏
U

(ê−αi )i∈V∩W )(−δi )[i∈V̄∩W̄ ]

̂(1− e−αi )
[i∈V∩W ]

r
[i∈V∪W ]
i

)
· 1,

Not a positive formula, not even predictably positive.

A direct formula (not inductive).

May lead to positive formulas for specific kinds of permutations
(Monk or Pieri).

Should lead to a recursive formula.
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Analogous statements in equivariant cohomology

For a simple reflection rj = (j , j + 1), let ∂j be the divided difference

operator given by ∂j f :=
(f−rj ·f )
αj

.

Theorem (G-Knutson)

For any reduced word W for w,

cwuv =
∑

U⊂W ,U⊂W ,
∏

V=v ,
∏

U=u

(∏
W ∂

[i∈Ū∩V̄ ]
i α̂i

[i∈U∩V ] ri

)
· 1,

where the sum is over reduced words U and V .

Corollary

Let s = rαs for any s. If w < w,

cwu,v = ∂αrαĉ
w
u,v · 1 + [u < u]cwu,v + [v < v ]cwu,v + [u < u][v < v ]αcwu,v
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Returning to our original intersection theorem

The original question was how many lines intersect 4 given lines. We
determined it is the triple intersection

[X1] ∩ [X2] ∩ [X3] ∩ [X4].

In equivariant cohomology, this is represented by a polytope decorated by
“vectors” that indicate equivariant cohomology classes.

The polytope we associate to X1 is the convex hull of fixed points in
a T action on Gr(2, 4), living in the Lie algebra dual t∗ of T .

We naturally associate to each such polytope a cohomology class in
H∗T to each fixed point. The degree of each polynomial is the
codimension of the polytope.

A vector in t∗ indicates a linear term, and we associate is to the same
element of H∗T at every fixed point.
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Intersection solution using graphs

Here is a flavor:

+

4

=

2

+ +

=

2

+
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Intersection solution using graphs

The we simplify using the algebra (which is hidden)

=

+
+

+ +

+
+

+ +

=

+
+
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Intersection solution using graphs

Now we evaluate the polynomial at 0, which means we kill all terms with
arrows.

2 �
�
�
�

=
+

= +

when we kill the last term with an arrow, we get two (times a point).
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