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Collaborators +

• Gonzalo Muñoz: optimizer

• Sebastian Pokutta: optimizer, ML, algorithms, everything

• Mark Zuckergerg, Nuri Ozbay: ex Ph-D students

• Some of us (me) are not ML experts. Some of us are.

• This talk is about theory, theory, theory.

• But we will also outline a possible realistic application of the
methodology.
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An “application”

• Deep Learning is receiving significant attention due to its
impressive performance.

• It has been only recently that results regarding the complexity of
training deep neural networks have been obtained.

• We will show that large classes of Neural Networks can be
trained to proved near optimality using linear programs whose
size is linear on the training data.

• SGD has running time linear on the training data, but it does not
offer optimality guarantees.
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Empirical Risk Minimization problem

Given:

• D data points (x̂i, ŷi), i = 1, . . . ,D
• x̂i ∈ Rn, ŷi ∈ Rm

• A loss function ℓ : Rm × Rm → R (not necessarily convex)

Compute f : Rn → Rm to solve

min
f

1
D

D∑
i=1

ℓ(f(x̂i), ŷi) (+ optional regularizer Φ(f))

f ∈ F (some class)
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Function parameterization

min
f

1
D

D∑
i=1

ℓ(f(x̂i), ŷi) (+ optional regularizer Φ(f))

f ∈ F (some class)

We assume family F (statisticians’ hypothesis) is parameterized:
there exists f such that

F = {f(x, θ) : θ ∈ Θ ⊆ [−1, 1]N}.

Using this notation the ERM problem becomes

min
θ∈Θ

1
D

D∑
i=1

ℓ(f(x̂i, θ), ŷi)
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Empirical Risk Minimization problem

min
f

1
D

D∑
i=1

ℓ(f(x̂i), ŷi) (+ optional regularizer Φ(f))

f ∈ F (some class)

Examples:

• Linear Regression. f(x) = Ax+ b with ℓ2-loss.
• Binary Classification. Varying f families and cross-entropy loss:
ℓ(p, y) = −y log(p)− (1− y) log(1− p)

• Neural Networks with k layers.
f(x) = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1(x), each Tj affine.
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Deep Networks (with 2-norm squared loss)

• D data points (x̂i, ŷi), 1 ≤ i ≤ D, x̂i ∈ Rn, ŷi ∈ Rm

• Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

• f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1
• Each Ti affine: Ti(y) = Aiy+ bi. Example σ(t) = max{0, t} (ReLu)
• A1 is n× w, Ak+1 is w×m, Ai is w× w otherwise.

mn

1

2

1

2

1 2 k

any architecture

up to w nodes per hidden layer
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∥ŷi − f(x̂i)∥
2

• f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1
• Each Ti affine: Ti(y) = Aiy+ bi. Example σ(t) = max{0, t} (ReLu)

• A1 is n× w, Ak+1 is w×m, Ai is w× w otherwise.

mn

1

2

1

2

1 2 k

any architecture

up to w nodes per hidden layer

7



Deep Networks (with 2-norm squared loss)

• D data points (x̂i, ŷi), 1 ≤ i ≤ D, x̂i ∈ Rn, ŷi ∈ Rm
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What we know for Neural Nets



Hardness Result

Problem: Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

where f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1

Theorem (Blum and Rivest 1992)

When ℓ ∈ (absolute value, 2-norm squared) training is NP-hard even
if k = 1 (only 3 nodes), D ∈ O(n), m = 1, x̂i ∈ {0, 1}n, ŷi ∈ {0, 1} and
weights are ±1.

...
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Exact Training Complexity

Problem: Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

where f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1

Theorem (Goel Kanade Klivans Thaler 2016)

(Abridged!) There is an algorithm for improper learning of networks
of ReLUs

• Running time is (more than) doubly exponential in e.g. number
of layers.

• For two layers, exponential in ϵ−Θ(1) and polynomial in D

9



Exact Training Complexity

Problem: Compute f : Rn → Rm to minimize

1
D

D∑
i=1
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Theorem (Arora Basu Mianjy Mukherjee 2018)

If k = 1 (one “hidden layer”) there is an exact training algorithm of
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O ( 2wDnwpoly(D,n,w) )

Polynomial in the size D of the data set, for fixed n,w.

n = dimension of input vectors, w = size of internal layers
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∥ŷi − f(x̂i)∥
2

where f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1

Theorem (Arora Basu Mianjy Mukherjee 2018)

If k = 1 (one “hidden layer”) there is an exact training algorithm of
complexity

O ( 2wDnwpoly(D,n,w) )

Polynomial in the size D of the data set, for fixed n,w.

n = dimension of input vectors,

w = size of internal layers

10



Exact Training Complexity

Problem: Compute f : Rn → Rm to minimize

1
D

D∑
i=1
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Theorem
For every ϵ > 0, ℓ, Θ ⊆ [−1, 1]N and D, there is a polytope with
variables (θ, xi, yi, Li) of size

O
(
(2L/ϵ)N+n+m+1 D

)
( L = largest Lipshitz constant of any σ, and N = O(wk) )

s.t. ∀ data set (X̂, Ŷ) = (x̂i, ŷi), i = 1, . . .D, there is a face FX̂,Ŷ with

min
θ∈Θ

1
D

D∑
i=1

Li

(θ, L) ∈ proj(FX̂,Ŷ)

provides an ϵ-approximation to ERM with data X̂, Ŷ.

A uniform (“universal”) linear program of size linear in the quantity
of training data.
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Our main toolset



Treewidth

Treewidth is a parameter that measures how tree-like a graph is.

Definition
The treewidth of graph G, is the smallest clique number of any
chordal supergraph of G, minus 1.

• OLD concept, but term coined by Robertson and Seymour
(1980s).

• Informal definition: graphs with small treewidth are the “simple”
graphs

• Many equivalent definitions.
• Trees have treewidth 1
• Cycles have treewidth 2
• Kn has treewidth n− 1
• the k× k planar grid has treewidth k
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Treewidth

Informal algorithmic definition:

• Start with with m “bags” with up to ω + 1 vertices each,
numbered 1, 2, . . . ,m. “Bag” = graph.

• Each bag includes some edges between vertices in the bag.
• Start of procedure: each bag is a “processed unit”. All vertices
are “boundary” vertices.

• Inductive step: take two processed units. Idenfify (“glue”) some
of the boundary with the same number of vertices in one unit
with same number of boundary vertices of the other, forming a
new processing unit.

• The boundary of the new unit will be a subset of the union of
the two boundaries, of size ≤ ω + 1
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Treewidth
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Treewidth: literature review

Treewidth is a parameter that measures how tree-like a graph is.

Definition
The treewidth of graph G, is the smallest clique number of any
chordal supergraph of G, minus 1.

• Intersection graph of subtrees of a tree, Robertson and Seymour
(1980s).

• Core concept in proof of Wagner Conjecture, 1984-2002.
• Early result: given a planar graph H any graph with no H minor has
tree-width at most f(H).

• “K-trees”, perfect graph literature, (1970s and after)
• Junction tree theorem, Lauritzen (1996), Pearle (1982). Graphical
Models, Belief Propagation.

• Nonserial Dynamic Programming, Nemhauser (1964). Bertele and
Brioschi (1972).
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Second tool: approximation through digitization

Let 0 ≤ z ≤ 1 and let L > 0 integral
Then we can approximate

z ≈
∑L

k=1 2−k yk, where each yk binary.

Error ≤ 2−L

• Suppose F : Rm → R with Lipschitz constant L

• Digitize (approximate) each component of x ∈ Rm

• So x → y (the binary approximation). y ∈ RmL

• And F(x) replaced by F̂(y)

• F̂(y) ≤ F(x) + mL 2−L

16
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• So x → y (the binary approximation). y ∈ RmL
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Final ingredient: lifted formulations

Lovász and Schrijver, Sherali and Adams, ∼ 1990

• 0/1 integer programming:

{x ∈ {0, 1}n : Ax ≤ b}
• Key idea: add new variables that express conjunctions:

• x[{1, 2}, {3}] which equals 1 iff x1 = x2 = 1 and x3 = 0
• Same as monomial x1x2(1− x3)
• can strengthen the formulation, e.g. if
2x1 + x3 + x4 ≤ 1 is a constraint of Ax ≤ b
then can say: 2x[{1, 2}, {3}] + x[{1, 2, 4}, {3}] ≤ x[{1, 2}, {3}]

• And more, e.g. x[{1, 2}, {3}] + x[{1}, {2, 3}] = x[{1}, {3}]
• “Level-k” formulation: only use monomials with up to k terms

Theorem: (2004)
Consider {x ∈ {0, 1}n : Ax ≤ b} where A ≥ 0 (a packing problem).
then “level-k” formulation implies all valid inequalities cTx ≤ d
where the subgraph of the intersection graph of A, induced by c
has treewidth ≤ k
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Approximate optimization of well-behaved functions

Prototype problem:

c∗ .
= min cTx

s.t. fi(x) ≤ 0, i = 1, . . . ,m
x ∈ [0, 1]n

An extension of work in Bienstock and Muñoz (2015).

Theorem
Suppose the intersection graph has tree-width ω and let L = maxi Li.

Then, for every ϵ > 0 there is an LP relaxation of size

O
(
(L/ϵ)ω+1 n

)
that guarantees ϵ-optimality and -feasibility errors.

cTx̂ ≤ c∗ + O(ϵ), fi(x̂) ≤ O(ϵ) ∀i
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Application to ERM problem

We now apply the LP approximation result to:

min
θ∈Θ

1
D

D∑
i=1

ℓ(f(x̂i, θ), ŷi) 1 ≤ i ≤ D

with Θ ⊆ [−1, 1]N, x̂i ∈ [−1, 1]n and ŷi ∈ [−1, 1]m.

We use the epigraph
formulation:

min
θ∈Θ

1
D

D∑
i=1

Li

Li ≥ ℓ(f(x̂i, θ), ŷi) 1 ≤ i ≤ D

Let L be the Lipschitz constant for g(x, y, θ) .
= ℓ(f(x, θ), y) over

[−1, 1]n+m+N.
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Proof Sketch

Every system of constraints of the type

Li ≥ ℓ(f(xi, θ), yi) 1 ≤ i ≤ D

has an intersection graph with the following structure:

θ

x
y y

x1

1

L1

L2

2

2

L

x

D

D
Dy

resulting in a formulation with treewidth at most N+ n+m+ 1
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LP size details

Thus the LP size given by the expression

O
(
(L/ϵ)ω+1 n

)
becomes

O
(
(2L/ϵ)N+n+m+1 D

)

The key to linear dependence on D lies in the fact that the D does
not add to the treewidth.

Different architectures → N and L.
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Architecture-Specific
Consequences



Training of Deep Neural Networks with ReLUs

Theorem (Arora, Basu, Mianjy and Mukherjee 2018)
If k = 1 (one “hidden layer”) and m = 1 there is an exact training
algorithm of complexity

O ( 2wDnwpoly(D,n,w) )

Polynomial in the size of the data set, for fixed n,w.
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Consequence of our result

If the entries of Ai,bi are required to be in [−1, 1], for any k,n,m,w, ϵ
there is a uniform LP of size

O
(
(nw/ϵ)k(n+m+N+1) D

)
with the same guarantees as before.

Core of the proof: In a DNN with k hidden layers the Lipschitz
constant of g(x, y, θ) over [−1, 1]n+m+N is ∼ nwk.
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The Blum-Rivest setup (Binarized Neural Networks)

Activation units:

...
y

a1, . . . ,am,b

z1

z2
zm

With z ∈ {0, 1}m,

y =

{
1, if aTz > b
0, otherwise.

Network with n binary inputs, m binary outputs, k layers
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The Blum-Rivest setup (Binarized Neural Networks)

Theorem (Blum and Rivest 1992)
When ℓ ∈ (absolute value, 2-norm squared) training is NP-hard even
if k = 1 (only 3 nodes), D ∈ O(n), m = 1 and weights are ±1.

...

25



Our result on Binarized Neural Networks

Theorem
Consider a BNN with m = 1 and ℓ arbitrary. There is a uniform LP of
size

O(2poly(k,n,w)D)

that solves ERM exactly for any input data.
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Concluding comments

• The results can be improved by considering the sparsity of the
network itself.

• Training using this approach generalizes. Meaning, using
enough1 data points we get an approximation to the “true” Risk
Minimization problem.

1depends on L and ϵ

27



Thank you!
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Did we say something about practicality?

We are solving Linear Programs. There are classical examples of
linear programs that are solved incrementally.

• Only a small fraction (sublinear) of the LP needs to be
constructed

• Example 1: Edmonds’ weighted matching algorithm (bah, that is
theory only)

• Example 2: Solving large set-partitioning LPs (airline industry)
• This requires tricks that exploit LP structure. It only works with
LPs that have specific, known structure

• That is the case in the above LPs.
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