Approximate Nonconvex Optimization and Treewidth

Daniel Bienstock¹ Triangle Lectures, 2018

¹IEOR, Columbia University

- Gonzalo Muñoz: optimizer
- Sebastian Pokutta: optimizer, ML, algorithms, everything
- Mark Zuckergerg, Nuri Ozbay: ex Ph-D students
- $\cdot\,$ Some of us (me) are not ML experts. Some of us are.
- This talk is about theory, theory, theory.
- But we will also outline a possible realistic application of the methodology.

• Deep Learning is receiving significant attention due to its impressive performance.

- Deep Learning is receiving significant attention due to its impressive performance.
- It has been only recently that results regarding the complexity of training deep neural networks have been obtained.

- Deep Learning is receiving significant attention due to its impressive performance.
- It has been only recently that results regarding the complexity of training deep neural networks have been obtained.
- We will show that large classes of Neural Networks can be trained to proved near optimality using linear programs whose size is linear on the training data.
- SGD has running time linear on the training data, but it does not offer optimality guarantees.

Empirical Risk Minimization problem

Given:

- *D* data points $(\hat{x}_i, \hat{y}_i), i = 1, \dots, D$
- $\hat{x}_i \in \mathbb{R}^n, \ \hat{y}_i \in \mathbb{R}^m$
- A loss function $\ell : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ (not necessarily convex)

Given:

- *D* data points $(\hat{x}_i, \hat{y}_i), i = 1, \dots, D$
- $\hat{x}_i \in \mathbb{R}^n, \ \hat{y}_i \in \mathbb{R}^m$
- A loss function $\ell : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ (not necessarily convex)

Compute $f : \mathbb{R}^n \to \mathbb{R}^m$ to solve

$$\min_{f} \frac{1}{D} \sum_{i=1}^{D} \ell(f(\hat{x}^{i}), \hat{y}^{i}) \qquad (+ \text{ optional regularizer } \Phi(f))$$
$$f \in F \qquad (\text{some class})$$

Function parameterization

$$\min_{f} \frac{1}{D} \sum_{i=1}^{D} \ell(f(\hat{x}^{i}), \hat{y}^{i}) \quad (+ \text{ optional regularizer } \Phi(f))$$
$$f \in F \quad (\text{some class})$$

We assume family *F* (statisticians' hypothesis) is parameterized: there exists *f* such that

 $F = \{f(x,\theta) : \theta \in \Theta \subseteq [-1,1]^N\}.$

Function parameterization

$$\min_{f} \frac{1}{D} \sum_{i=1}^{D} \ell(f(\hat{x}^{i}), \hat{y}^{i}) \quad (+ \text{ optional regularizer } \Phi(f))$$
$$f \in F \quad (\text{some class})$$

We assume family *F* (statisticians' hypothesis) is parameterized: there exists *f* such that

 $F = \{f(x,\theta) : \theta \in \Theta \subseteq [-1,1]^N\}.$

Using this notation the ERM problem becomes

$$\min_{\theta \in \Theta} \frac{1}{D} \sum_{i=1}^{D} \ell(f(\hat{x}^{i}, \theta), \hat{y}^{i})$$

$$\min_{f} \frac{1}{D} \sum_{i=1}^{D} \ell(f(\hat{x}^{i}), \hat{y}^{i})$$
 (+ optional regularizer $\Phi(f)$)
 $f \in F$ (some class)

Examples:

- Linear Regression. f(x) = Ax + b with ℓ_2 -loss.
- Binary Classification. Varying f families and cross-entropy loss: $\ell(p,y) = -y \log(p) - (1-y) \log(1-p)$
- Neural Networks with *k* layers.

 $f(x) = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1(x)$, each T_j affine.

• D data points $(\hat{x}_i, \hat{y}_i), 1 \leq i \leq D, \hat{x}_i \in \mathbb{R}^n, \hat{y}_i \in \mathbb{R}^m$

- D data points $(\hat{x}_i, \hat{y}_i), 1 \leq i \leq D, \hat{x}_i \in \mathbb{R}^n, \hat{y}_i \in \mathbb{R}^m$
- Compute $f : \mathbb{R}^n \to \mathbb{R}^m$ to minimize

$$\frac{1}{D}\sum_{i=1}^{D} \|\hat{y}_i - f(\hat{x}_i)\|^2$$

- *D* data points (\hat{x}_i, \hat{y}_i) , $1 \le i \le D$, $\hat{x}_i \in \mathbb{R}^n$, $\hat{y}_i \in \mathbb{R}^m$
- Compute $f : \mathbb{R}^n \to \mathbb{R}^m$ to minimize

$$\frac{1}{D}\sum_{i=1}^{D}\|\hat{y}_{i} - f(\hat{x}_{i})\|^{2}$$

$$\cdot f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$$

- *D* data points (\hat{x}_i, \hat{y}_i) , $1 \le i \le D$, $\hat{x}_i \in \mathbb{R}^n$, $\hat{y}_i \in \mathbb{R}^m$
- Compute $f : \mathbb{R}^n \to \mathbb{R}^m$ to minimize

$$\frac{1}{D}\sum_{i=1}^{D}\|\hat{y}_{i} - f(\hat{x}_{i})\|^{2}$$

$$\cdot f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$$

• Each T_i affine: $T_i(y) = A_i y + b_i$. Example $\sigma(t) = \max\{0, t\}$ (ReLu)

- *D* data points (\hat{x}_i, \hat{y}_i) , $1 \le i \le D$, $\hat{x}_i \in \mathbb{R}^n$, $\hat{y}_i \in \mathbb{R}^m$
- Compute $f : \mathbb{R}^n \to \mathbb{R}^m$ to minimize

$$\frac{1}{D}\sum_{i=1}^{D}\|\hat{y}_{i} - f(\hat{x}_{i})\|^{2}$$

 $\cdot f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$

• Each T_i affine: $T_i(y) = A_i y + b_i$. Example $\sigma(t) = \max\{0, t\}$ (ReLu)

• A_1 is $n \times w$, A_{k+1} is $w \times m$, A_i is $w \times w$ otherwise.

What we know for Neural Nets

Hardness Result

Problem: Compute $f : \mathbb{R}^n \to \mathbb{R}^m$ to minimize

$$\frac{1}{D}\sum_{i=1}^{D}\|\hat{y}_{i} - f(\hat{x}_{i})\|^{2}$$

Hardness Result

Problem: Compute $f : \mathbb{R}^n \to \mathbb{R}^m$ to minimize

$$\frac{1}{D}\sum_{i=1}^{D}\|\hat{y}_{i} - f(\hat{x}_{i})\|^{2}$$

where $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$

Hardness Result

Problem: Compute $f : \mathbb{R}^n \to \mathbb{R}^m$ to minimize

$$\frac{1}{D}\sum_{i=1}^{D}\|\hat{y}_{i} - f(\hat{x}_{i})\|^{2}$$

where $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$

Theorem (Blum and Rivest 1992)

When $\ell \in (absolute value, 2\text{-norm squared})$ training is NP-hard even if k = 1 (only 3 nodes), $D \in O(n)$, m = 1, $\hat{x}^i \in \{0, 1\}^n$, $\hat{y}^i \in \{0, 1\}$ and weights are ± 1 .

Problem: Compute $f : \mathbb{R}^n \to \mathbb{R}^m$ to minimize

$$\frac{1}{D}\sum_{i=1}^{D}\|\hat{y}_{i} - f(\hat{x}_{i})\|^{2}$$

Problem: Compute $f : \mathbb{R}^n \to \mathbb{R}^m$ to minimize

$$\frac{1}{D}\sum_{i=1}^{D}\|\hat{y}_{i} - f(\hat{x}_{i})\|^{2}$$

where $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$

Problem: Compute $f : \mathbb{R}^n \to \mathbb{R}^m$ to minimize

$$\frac{1}{D}\sum_{i=1}^{D}\|\hat{y}_{i} - f(\hat{x}_{i})\|^{2}$$

where $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$

Theorem (Goel Kanade Klivans Thaler 2016)

(Abridged!) There is an algorithm for **improper** learning of networks of ReLUs

Problem: Compute $f : \mathbb{R}^n \to \mathbb{R}^m$ to minimize

$$\frac{1}{D}\sum_{i=1}^{D}\|\hat{y}_{i} - f(\hat{x}_{i})\|^{2}$$

where $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$

Theorem (Goel Kanade Klivans Thaler 2016)

(Abridged!) There is an algorithm for **improper** learning of networks of ReLUs

- Running time is (more than) doubly exponential in e.g. number of layers.
- \cdot For two layers, exponential in $\epsilon^{-\Theta(1)}$ and polynomial in D

Problem: Compute $f : \mathbb{R}^n \to \mathbb{R}^m$ to minimize

$$\frac{1}{D}\sum_{i=1}^{D}\|\hat{y}_{i} - f(\hat{x}_{i})\|^{2}$$

Problem: Compute $f : \mathbb{R}^n \to \mathbb{R}^m$ to minimize

$$\frac{1}{D}\sum_{i=1}^{D}\|\hat{y}_{i} - f(\hat{x}_{i})\|^{2}$$

where $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$

Problem: Compute $f : \mathbb{R}^n \to \mathbb{R}^m$ to minimize

$$\frac{1}{D}\sum_{i=1}^{D}\|\hat{y}_{i} - f(\hat{x}_{i})\|^{2}$$

where $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$

Theorem (Arora Basu Mianjy Mukherjee 2018)

If *k* = 1 (one "hidden layer") there is an exact training algorithm of complexity

Problem: Compute $f : \mathbb{R}^n \to \mathbb{R}^m$ to minimize

$$\frac{1}{D}\sum_{i=1}^{D} \|\hat{y}_{i} - f(\hat{x}_{i})\|^{2}$$

where $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$

Theorem (Arora Basu Mianjy Mukherjee 2018)

If k = 1 (one "hidden layer") there is an exact training algorithm of complexity

 $O(2^w D^{nw} poly(D, n, w))$

Polynomial in the size **D** of the data set, for fixed n, w.

n = dimension of input vectors,

Problem: Compute $f : \mathbb{R}^n \to \mathbb{R}^m$ to minimize

$$\frac{1}{D}\sum_{i=1}^{D}\|\hat{y}_{i} - f(\hat{x}_{i})\|^{2}$$

where $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$

Theorem (Arora Basu Mianjy Mukherjee 2018)

If k = 1 (one "hidden layer") there is an exact training algorithm of complexity

 $O(2^{w}D^{nw}poly(D, n, w))$

Polynomial in the size **D** of the data set, for fixed n, w.

n = dimension of input vectors, *w* = size of internal layers

Theorem

For every $\epsilon > 0$, ℓ , $\Theta \subseteq [-1,1]^N$ and D, there is a polytope with variables (θ, x^i, y^i, L_i) of size

 $O\left((2\mathcal{L}/\epsilon)^{N+n+m+1}D\right)$

(\mathcal{L} = largest Lipshitz constant of any σ , and N = O(wk))

Theorem

For every $\epsilon > 0$, ℓ , $\Theta \subseteq [-1,1]^N$ and D, there is a polytope with variables (θ, x^i, y^i, L_i) of size

 $O\left((2\mathcal{L}/\epsilon)^{N+n+m+1}D\right)$

(\mathcal{L} = largest Lipshitz constant of any σ , and $\mathbf{N} = O(\mathbf{wk})$) s.t. \forall data set $(\hat{X}, \hat{Y}) = (\hat{X}^i, \hat{y}^i)$, i = 1, ..., D, there is a face $\mathcal{F}_{\hat{X}\hat{Y}}$ with

$$\min_{\theta \in \Theta} \frac{1}{D} \sum_{i=1}^{D} L_i$$
$$(\theta, L) \in \operatorname{proj}(\mathcal{F}_{\hat{\chi}, \hat{\chi}})$$

provides an ϵ -approximation to ERM with data \hat{X}, \hat{Y} .

A **uniform** ("universal") linear program of size linear in the quantity of training data.

Our main toolset

Treewidth

Treewidth is a parameter that measures how tree-like a graph is.

Treewidth

Treewidth is a parameter that measures how tree-like a graph is.

Definition

The treewidth of graph G, is the smallest clique number of any chordal supergraph of G, minus 1.

Treewidth

Treewidth is a parameter that measures how *tree-like* a graph is.

Definition

The treewidth of graph G, is the smallest clique number of any chordal supergraph of G, minus 1.

- **OLD** concept, but term coined by Robertson and Seymour (1980s).
- Informal definition: graphs with small treewidth are the "simple" graphs
- Many equivalent definitions.
- Trees have treewidth 1
- Cycles have treewidth 2
- K_n has treewidth n − 1
- the $k \times k$ planar grid has treewidth k

Informal algorithmic definition:
Informal algorithmic definition:

- Start with with m "bags" with up to $\omega + 1$ vertices each, numbered 1, 2, ..., m. "Bag" = graph.
- Each bag includes some edges between vertices in the bag.
- Start of procedure: each bag is a "processed unit". All vertices are "boundary" vertices.
- Inductive step: take two processed units. Idenfify ("glue") some of the boundary with the same number of vertices in one unit with same number of boundary vertices of the other, forming a new processing unit.
- The boundary of the new unit will be a subset of the union of the two boundaries, of size $\leq \omega + 1$

Treewidth

Treewidth: literature review

Treewidth is a parameter that measures how tree-like a graph is.

Definition

Definition

- Intersection graph of subtrees of a tree, Robertson and Seymour (1980s).
 - Core concept in proof of Wagner Conjecture, 1984-2002.
 - Early result: given a planar graph *H* any graph with no *H* minor has tree-width at most *f*(*H*).

Definition

- Intersection graph of subtrees of a tree, Robertson and Seymour (1980s).
 - Core concept in proof of Wagner Conjecture, 1984-2002.
 - Early result: given a planar graph *H* any graph with no *H* minor has tree-width at most *f*(*H*).
- "K-trees", perfect graph literature, (1970s and after)

Definition

- Intersection graph of subtrees of a tree, Robertson and Seymour (1980s).
 - Core concept in proof of Wagner Conjecture, 1984-2002.
 - Early result: given a planar graph *H* any graph with no *H* minor has tree-width at most *f*(*H*).
- "K-trees", perfect graph literature, (1970s and after)
- Junction tree theorem, Lauritzen (1996), Pearle (1982). Graphical Models, Belief Propagation.

Definition

- Intersection graph of subtrees of a tree, Robertson and Seymour (1980s).
 - Core concept in proof of Wagner Conjecture, 1984-2002.
 - Early result: given a planar graph *H* any graph with no *H* minor has tree-width at most *f*(*H*).
- "K-trees", perfect graph literature, (1970s and after)
- Junction tree theorem, Lauritzen (1996), Pearle (1982). Graphical Models, Belief Propagation.
- Nonserial Dynamic Programming, Nemhauser (1964). Bertele and Brioschi (1972).

Let $0 \le z \le 1$ and let L > 0 integral Then we can approximate

 $z \approx \sum_{k=1}^{L} 2^{-k} y_k$, where each y_k binary.

Let $0 \le z \le 1$ and let L > 0 integral Then we can approximate

Let $0 \le z \le 1$ and let L > 0 integral Then we can approximate

 $z \approx \sum_{k=1}^{L} 2^{-k} y_k$, where each y_k binary. Error $\leq 2^{-L}$

• Suppose $F : \mathbb{R}^m \to \mathbb{R}$ with Lipschitz constant \mathcal{L}

Let $0 \le z \le 1$ and let L > 0 integral Then we can approximate

- \cdot Suppose $F: \mathbb{R}^m
 ightarrow \mathbb{R}$ with Lipschitz constant $\mathcal L$
- Digitize (approximate) each component of $x \in \mathbb{R}^m$

Let $0 \le z \le 1$ and let L > 0 integral Then we can approximate

- \cdot Suppose $F: \mathbb{R}^m
 ightarrow \mathbb{R}$ with Lipschitz constant $\mathcal L$
- Digitize (approximate) each component of $x \in \mathbb{R}^m$
- So $x \rightarrow y$ (the binary approximation). $y \in \mathbb{R}^{mL}$

Let $0 \le z \le 1$ and let L > 0 integral Then we can approximate

- \cdot Suppose $F: \mathbb{R}^m
 ightarrow \mathbb{R}$ with Lipschitz constant $\mathcal L$
- Digitize (approximate) each component of $x \in \mathbb{R}^m$
- So $\mathbf{x} \to \mathbf{y}$ (the binary approximation). $\mathbf{y} \in \mathbb{R}^{mL}$
- And F(x) replaced by $\hat{F}(y)$

Let $0 \le z \le 1$ and let L > 0 integral Then we can approximate

- \cdot Suppose $F: \mathbb{R}^m
 ightarrow \mathbb{R}$ with Lipschitz constant $\mathcal L$
- Digitize (approximate) each component of $x \in \mathbb{R}^m$
- So $\mathbf{x} \rightarrow \mathbf{y}$ (the binary approximation). $\mathbf{y} \in \mathbb{R}^{mL}$
- And F(x) replaced by $\hat{F}(y)$
- $\hat{F}(y) \leq F(x) + m\mathcal{L} 2^{-L}$

Lovász and Schrijver, Sherali and Adams, \sim 1990

• 0/1 integer programming:

Lovász and Schrijver, Sherali and Adams, \sim 1990

- 0/1 integer programming: $\{x \in \{0,1\}^n : Ax \leq b\}$
- Key idea: **add** new variables that express conjunctions:

Lovász and Schrijver, Sherali and Adams, \sim 1990

- 0/1 integer programming: $\{x \in \{0,1\}^n : Ax \leq b\}$
- Key idea: **add** new variables that express conjunctions:
 - $x[\{1,2\},\{3\}]$ which equals 1 iff $x_1 = x_2 = 1$ and $x_3 = 0$

Lovász and Schrijver, Sherali and Adams, \sim 1990

- 0/1 integer programming: $\{x \in \{0,1\}^n : Ax \leq b\}$
- Key idea: add new variables that express conjunctions:
 - x[{1,2}, {3}] which equals 1 iff $x_1 = x_2 = 1$ and $x_3 = 0$
 - Same as monomial x₁x₂(1 − x₃)

Lovász and Schrijver, Sherali and Adams, \sim 1990

- 0/1 integer programming: $\{x \in \{0,1\}^n : Ax \leq b\}$
- Key idea: **add** new variables that express conjunctions:
 - x[{1,2}, {3}] which equals 1 iff $x_1 = x_2 = 1$ and $x_3 = 0$
 - Same as monomial x₁x₂(1 − x₃)
 - can strengthen the formulation, e.g. if
 2x₁ + x₃ + x₄ ≤ 1 is a constraint of Ax ≤ b
 then can say: 2x[{1,2}, {3}] + x[{1,2,4}, {3}] ≤ x[{1,2}, {3}]
 - And more, e.g. $x[\{1,2\},\{3\}] + x[\{1\},\{2,3\}] = x[\{1\},\{3\}]$
- "Level-k" formulation: only use monomials with up to **k** terms

Theorem: (2004)

Consider $\{x \in \{0,1\}^n : Ax \le b\}$ where $A \ge 0$

Lovász and Schrijver, Sherali and Adams, \sim 1990

- 0/1 integer programming: $\{x \in \{0,1\}^n : Ax \leq b\}$
- Key idea: **add** new variables that express conjunctions:
 - x[{1,2}, {3}] which equals 1 iff $x_1 = x_2 = 1$ and $x_3 = 0$
 - Same as monomial x₁x₂(1 − x₃)
 - can strengthen the formulation, e.g. if
 2x₁ + x₃ + x₄ ≤ 1 is a constraint of Ax ≤ b
 then can say: 2x[{1,2}, {3}] + x[{1,2,4}, {3}] ≤ x[{1,2}, {3}]
 - And more, e.g. $x[\{1,2\},\{3\}] + x[\{1\},\{2,3\}] = x[\{1\},\{3\}]$
- "Level-k" formulation: only use monomials with up to **k** terms

Theorem: (2004)

Consider $\{x \in \{0,1\}^n : Ax \le b\}$ where $A \ge 0$ (a packing problem).

Lovász and Schrijver, Sherali and Adams, \sim 1990

- 0/1 integer programming: $\{x \in \{0,1\}^n : Ax \leq b\}$
- Key idea: **add** new variables that express conjunctions:
 - x[{1,2}, {3}] which equals 1 iff $x_1 = x_2 = 1$ and $x_3 = 0$
 - Same as monomial x₁x₂(1 − x₃)
 - can strengthen the formulation, e.g. if $2x_1 + x_3 + x_4 \le 1$ is a constraint of $Ax \le b$ then can say: $2x[\{1,2\},\{3\}] + x[\{1,2,4\},\{3\}] \le x[\{1,2\},\{3\}]$
 - And more, e.g. $x[\{1,2\},\{3\}] + x[\{1\},\{2,3\}] = x[\{1\},\{3\}]$
- "Level-k" formulation: only use monomials with up to **k** terms

Theorem: (2004)

Consider $\{x \in \{0,1\}^n : Ax \le b\}$ where $A \ge 0$ (a packing problem).

then "level-k" formulation implies all valid inequalities $c^T x \leq d$

Lovász and Schrijver, Sherali and Adams, \sim 1990

- 0/1 integer programming: $\{x \in \{0,1\}^n : Ax \leq b\}$
- Key idea: **add** new variables that express conjunctions:
 - x[{1,2}, {3}] which equals 1 iff $x_1 = x_2 = 1$ and $x_3 = 0$
 - Same as monomial x₁x₂(1 − x₃)
 - can strengthen the formulation, e.g. if $2x_1 + x_3 + x_4 \leq 1$ is a constraint of $Ax \leq b$ then can say: $2x[\{1,2\},\{3\}] + x[\{1,2,4\},\{3\}] \leq x[\{1,2\},\{3\}]$
 - And more, e.g. $x[\{1,2\},\{3\}] + x[\{1\},\{2,3\}] = x[\{1\},\{3\}]$
- "Level-k" formulation: only use monomials with up to **k** terms

Theorem: (2004)

Consider $\{x \in \{0,1\}^n : Ax \le b\}$ where $A \ge 0$ (a packing problem).

then "level-k" formulation implies all valid inequalities $c^T x \leq d$

where the subgraph of the intersection graph of A,

Lovász and Schrijver, Sherali and Adams, \sim 1990

- 0/1 integer programming: $\{x \in \{0,1\}^n : Ax \leq b\}$
- Key idea: **add** new variables that express conjunctions:
 - x[{1,2}, {3}] which equals 1 iff $x_1 = x_2 = 1$ and $x_3 = 0$
 - Same as monomial x₁x₂(1 − x₃)
 - can strengthen the formulation, e.g. if $2x_1 + x_3 + x_4 \leq 1$ is a constraint of $Ax \leq b$ then can say: $2x[\{1,2\},\{3\}] + x[\{1,2,4\},\{3\}] \leq x[\{1,2\},\{3\}]$
 - And more, e.g. $x[\{1,2\},\{3\}] + x[\{1\},\{2,3\}] = x[\{1\},\{3\}]$
- "Level-k" formulation: only use monomials with up to **k** terms

Theorem: (2004)

Consider $\{x \in \{0,1\}^n : Ax \le b\}$ where $A \ge 0$ (a packing problem).

then "level-k" formulation implies all valid inequalities $c^T x \leq d$

where the subgraph of the intersection graph of A, induced by c

Lovász and Schrijver, Sherali and Adams, \sim 1990

- 0/1 integer programming: $\{x \in \{0,1\}^n : Ax \leq b\}$
- Key idea: **add** new variables that express conjunctions:
 - x[{1,2}, {3}] which equals 1 iff $x_1 = x_2 = 1$ and $x_3 = 0$
 - Same as monomial x₁x₂(1 − x₃)
 - can strengthen the formulation, e.g. if $2x_1 + x_3 + x_4 \leq 1$ is a constraint of $Ax \leq b$ then can say: $2x[\{1,2\},\{3\}] + x[\{1,2,4\},\{3\}] \leq x[\{1,2\},\{3\}]$
 - · And more, e.g. $x[\{1,2\},\{3\}] + x[\{1\},\{2,3\}] = x[\{1\},\{3\}]$
- "Level-k" formulation: only use monomials with up to **k** terms

Theorem: (2004)

Consider $\{x \in \{0,1\}^n : Ax \le b\}$ where $A \ge 0$ (a packing problem).

then "level-k" formulation implies all valid inequalities $c^T x \le d$ where the subgraph of the intersection graph of A, induced by chas treewidth $\le k$

Approximate optimization of well-behaved functions

Prototype problem:

$$c^* \doteq \min c^T x$$

s.t. $f_i(x) \le 0, \qquad i = 1, \dots, m$
 $x \in [0, 1]^n$

An extension of work in Bienstock and Muñoz (2015).

Theorem

Suppose the intersection graph has tree-width ω and let $\mathcal{L} = \max_i \mathcal{L}_i$.

Approximate optimization of well-behaved functions

Prototype problem:

$$c^* \doteq \min c^T x$$

s.t. $f_i(x) \le 0, \qquad i = 1, \dots, m$
 $x \in [0, 1]^n$

An extension of work in Bienstock and Muñoz (2015).

Theorem

Suppose the intersection graph has tree-width ω and let $\mathcal{L} = \max_i \mathcal{L}_i$. Then, for every $\epsilon > 0$ there is an LP relaxation of size

$$O\left((\mathcal{L}/\epsilon)^{\omega+1}n\right)$$

that guarantees ϵ -optimality and -feasibility errors.

Approximate optimization of well-behaved functions

Prototype problem:

$$c^* \doteq \min c^T x$$

s.t. $f_i(x) \le 0, \qquad i = 1, \dots, m$
 $x \in [0, 1]^n$

An extension of work in Bienstock and Muñoz (2015).

Theorem

Suppose the intersection graph has tree-width ω and let $\mathcal{L} = \max_i \mathcal{L}_i$. Then, for every $\epsilon > 0$ there is an LP relaxation of size

$$O\left((\mathcal{L}/\epsilon)^{\omega+1}n\right)$$

that guarantees ϵ -optimality and -feasibility errors.

$$c^{\mathsf{T}}\hat{x} \leq c^* + O(\epsilon), \quad f_i(\hat{x}) \leq O(\epsilon) \ \forall i$$

We now apply the LP approximation result to:

$$\min_{\theta \in \Theta} \frac{1}{D} \sum_{i=1}^{D} \ell(f(\hat{x}^{i}, \theta), \hat{y}^{i}) \quad 1 \le i \le D$$

with $\Theta \subseteq [-1, 1]^N$, $\hat{x}^i \in [-1, 1]^n$ and $\hat{y}^i \in [-1, 1]^m$.

We now apply the LP approximation result to:

$$\min_{\theta \in \Theta} \frac{1}{D} \sum_{i=1}^{D} \ell(f(\hat{x}^{i}, \theta), \hat{y}^{i}) \quad 1 \le i \le D$$

with $\Theta \subseteq [-1, 1]^N$, $\hat{x}^i \in [-1, 1]^n$ and $\hat{y}^i \in [-1, 1]^m$. We use the epigraph formulation:

$$\begin{split} \min_{\theta \in \Theta} \frac{1}{D} \sum_{i=1}^{D} L_i \\ L_i \geq \ell(f(\hat{x}^i, \theta), \hat{y}^i) \quad 1 \leq i \leq D \end{split}$$

Let \mathcal{L} be the Lipschitz constant for $g(x, y, \theta) \doteq \ell(f(x, \theta), y)$ over $[-1, 1]^{n+m+N}$.

Every system of constraints of the type

$$L_i \geq \ell(f(x^i, \theta), y^i) \quad 1 \leq i \leq D$$

has an intersection graph with the following structure:

resulting in a formulation with *treewidth* at most N + n + m + 1

Thus the LP size given by the expression

 $O\left((\mathcal{L}/\epsilon)^{\omega+1}n\right)$

becomes

 $O\left(\left(2\mathcal{L}/\epsilon\right)^{N+n+m+1}D\right)$

Thus the LP size given by the expression

 $O\left((\mathcal{L}/\epsilon)^{\omega+1}n\right)$

becomes

 $O\left(\left(2\mathcal{L}/\epsilon\right)^{N+n+m+1}D\right)$

The key to linear dependence on D lies in the fact that the D does not add to the treewidth. Thus the LP size given by the expression

 $O\left((\mathcal{L}/\epsilon)^{\omega+1}n\right)$

becomes

 $O\left(\left(2\mathcal{L}/\epsilon\right)^{N+n+m+1}D\right)$

The key to linear dependence on D lies in the fact that the D does not add to the treewidth.

Different architectures $\rightarrow N$ and \mathcal{L} .

Architecture-Specific Consequences

Theorem (Arora, Basu, Mianjy and Mukherjee 2018)

If *k* = 1 (one "hidden layer") and *m* = 1 there is an exact training algorithm of complexity
Theorem (Arora, Basu, Mianjy and Mukherjee 2018) If k = 1 (one "hidden layer") and m = 1 there is an exact training algorithm of complexity

 $O(2^w D^{nw} poly(D, n, w))$

Polynomial in the size of the data set, for fixed n, w.

Consequence of our result

If the entries of A_i , b_i are required to be in [-1, 1], for any k, n, m, w, ϵ there is a uniform LP of size

 $O\left((nw/\epsilon)^{k(n+m+N+1)}D\right)$

with the same guarantees as before.

If the entries of A_i , b_i are required to be in [-1, 1], for any k, n, m, w, ϵ there is a uniform LP of size

 $O\left((NW/\epsilon)^{k(n+m+N+1)}D\right)$

with the same guarantees as before.

Core of the proof: In a DNN with *k* hidden layers the Lipschitz constant of $g(x, y, \theta)$ over $[-1, 1]^{n+m+N}$ is $\sim nw^k$.

The Blum-Rivest setup (Binarized Neural Networks)

The Blum-Rivest setup (Binarized Neural Networks)

Activation units:

With $z \in \{0, 1\}^m$,

$$y = \begin{cases} 1, & \text{if } a^T z > b \\ 0, & \text{otherwise.} \end{cases}$$

The Blum-Rivest setup (Binarized Neural Networks)

Activation units:

With $z \in \{0, 1\}^m$, $y = \begin{cases} 1, & \text{if } a^T z > b \\ 0, & \text{otherwise.} \end{cases}$

Network with *n* binary inputs, *m* binary outputs, *k* layers

Theorem (Blum and Rivest 1992)

When $\ell \in (absolute value, 2\text{-norm squared})$ training is NP-hard even if k = 1 (only 3 nodes), $D \in O(n)$, m = 1 and weights are ± 1 .

Theorem

Consider a BNN with m=1 and ℓ arbitrary. There is a uniform LP of size

 $O(2^{poly(k,n,w)}D)$

that solves ERM exactly for any input data.

- The results can be improved by considering the sparsity of the network itself.
- Training using this approach *generalizes*. Meaning, using enough¹ data points we get an approximation to the "true" Risk Minimization problem.

Thank you!

• Only a small fraction (sublinear) of the LP needs to be constructed

- Only a small fraction (sublinear) of the LP needs to be constructed
- Example 1: Edmonds' weighted matching algorithm (bah, that is theory only)

- Only a small fraction (sublinear) of the LP needs to be constructed
- Example 1: Edmonds' weighted matching algorithm (bah, that is theory only)
- Example 2: Solving large set-partitioning LPs (airline industry)

- Only a small fraction (sublinear) of the LP needs to be constructed
- Example 1: Edmonds' weighted matching algorithm (bah, that is theory only)
- Example 2: Solving large set-partitioning LPs (airline industry)
- This requires tricks that exploit LP structure. It only works with LPs that have specific, known structure
- That is the case in the above LPs.

Thu.Nov..8.214048.2018@blacknwhite