
Approximate Nonconvex Optimization and
Treewidth

Daniel Bienstock1

Triangle Lectures, 2018
1IEOR, Columbia University

1

Collaborators +

• Gonzalo Muñoz: optimizer

• Sebastian Pokutta: optimizer, ML, algorithms, everything

• Mark Zuckergerg, Nuri Ozbay: ex Ph-D students

• Some of us (me) are not ML experts. Some of us are.

• This talk is about theory, theory, theory.

• But we will also outline a possible realistic application of the
methodology.

2

An “application”

• Deep Learning is receiving significant attention due to its
impressive performance.

• It has been only recently that results regarding the complexity of
training deep neural networks have been obtained.

• We will show that large classes of Neural Networks can be
trained to proved near optimality using linear programs whose
size is linear on the training data.

• SGD has running time linear on the training data, but it does not
offer optimality guarantees.

3

An “application”

• Deep Learning is receiving significant attention due to its
impressive performance.

• It has been only recently that results regarding the complexity of
training deep neural networks have been obtained.

• We will show that large classes of Neural Networks can be
trained to proved near optimality using linear programs whose
size is linear on the training data.

• SGD has running time linear on the training data, but it does not
offer optimality guarantees.

3

An “application”

• Deep Learning is receiving significant attention due to its
impressive performance.

• It has been only recently that results regarding the complexity of
training deep neural networks have been obtained.

• We will show that large classes of Neural Networks can be
trained to proved near optimality using linear programs whose
size is linear on the training data.

• SGD has running time linear on the training data, but it does not
offer optimality guarantees.

3

Empirical Risk Minimization problem

Given:

• D data points (x̂i, ŷi), i = 1, . . . ,D
• x̂i ∈ Rn, ŷi ∈ Rm

• A loss function ℓ : Rm × Rm → R (not necessarily convex)

Compute f : Rn → Rm to solve

min
f

1
D

D∑
i=1

ℓ(f(x̂i), ŷi) (+ optional regularizer Φ(f))

f ∈ F (some class)

4

Empirical Risk Minimization problem

Given:

• D data points (x̂i, ŷi), i = 1, . . . ,D
• x̂i ∈ Rn, ŷi ∈ Rm

• A loss function ℓ : Rm × Rm → R (not necessarily convex)

Compute f : Rn → Rm to solve

min
f

1
D

D∑
i=1

ℓ(f(x̂i), ŷi) (+ optional regularizer Φ(f))

f ∈ F (some class)

4

Empirical Risk Minimization problem

Given:

• D data points (x̂i, ŷi), i = 1, . . . ,D
• x̂i ∈ Rn, ŷi ∈ Rm

• A loss function ℓ : Rm × Rm → R (not necessarily convex)

Compute f : Rn → Rm to solve

min
f

1
D

D∑
i=1

ℓ(f(x̂i), ŷi) (+ optional regularizer Φ(f))

f ∈ F (some class)

4

Function parameterization

min
f

1
D

D∑
i=1

ℓ(f(x̂i), ŷi) (+ optional regularizer Φ(f))

f ∈ F (some class)

We assume family F (statisticians’ hypothesis) is parameterized:
there exists f such that

F = {f(x, θ) : θ ∈ Θ ⊆ [−1, 1]N}.

Using this notation the ERM problem becomes

min
θ∈Θ

1
D

D∑
i=1

ℓ(f(x̂i, θ), ŷi)

5

Function parameterization

min
f

1
D

D∑
i=1

ℓ(f(x̂i), ŷi) (+ optional regularizer Φ(f))

f ∈ F (some class)

We assume family F (statisticians’ hypothesis) is parameterized:
there exists f such that

F = {f(x, θ) : θ ∈ Θ ⊆ [−1, 1]N}.

Using this notation the ERM problem becomes

min
θ∈Θ

1
D

D∑
i=1

ℓ(f(x̂i, θ), ŷi)

5

Empirical Risk Minimization problem

min
f

1
D

D∑
i=1

ℓ(f(x̂i), ŷi) (+ optional regularizer Φ(f))

f ∈ F (some class)

Examples:

• Linear Regression. f(x) = Ax+ b with ℓ2-loss.
• Binary Classification. Varying f families and cross-entropy loss:
ℓ(p, y) = −y log(p)− (1− y) log(1− p)

• Neural Networks with k layers.
f(x) = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1(x), each Tj affine.

6

Deep Networks (with 2-norm squared loss)

• D data points (x̂i, ŷi), 1 ≤ i ≤ D, x̂i ∈ Rn, ŷi ∈ Rm

• Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

• f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1
• Each Ti affine: Ti(y) = Aiy+ bi. Example σ(t) = max{0, t} (ReLu)
• A1 is n× w, Ak+1 is w×m, Ai is w× w otherwise.

mn

1

2

1

2

1 2 k

any architecture

up to w nodes per hidden layer

7

Deep Networks (with 2-norm squared loss)

• D data points (x̂i, ŷi), 1 ≤ i ≤ D, x̂i ∈ Rn, ŷi ∈ Rm

• Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

• f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1
• Each Ti affine: Ti(y) = Aiy+ bi. Example σ(t) = max{0, t} (ReLu)
• A1 is n× w, Ak+1 is w×m, Ai is w× w otherwise.

mn

1

2

1

2

1 2 k

any architecture

up to w nodes per hidden layer

7

Deep Networks (with 2-norm squared loss)

• D data points (x̂i, ŷi), 1 ≤ i ≤ D, x̂i ∈ Rn, ŷi ∈ Rm

• Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

• f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1

• Each Ti affine: Ti(y) = Aiy+ bi. Example σ(t) = max{0, t} (ReLu)
• A1 is n× w, Ak+1 is w×m, Ai is w× w otherwise.

mn

1

2

1

2

1 2 k

any architecture

up to w nodes per hidden layer

7

Deep Networks (with 2-norm squared loss)

• D data points (x̂i, ŷi), 1 ≤ i ≤ D, x̂i ∈ Rn, ŷi ∈ Rm

• Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

• f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1
• Each Ti affine: Ti(y) = Aiy+ bi. Example σ(t) = max{0, t} (ReLu)

• A1 is n× w, Ak+1 is w×m, Ai is w× w otherwise.

mn

1

2

1

2

1 2 k

any architecture

up to w nodes per hidden layer

7

Deep Networks (with 2-norm squared loss)

• D data points (x̂i, ŷi), 1 ≤ i ≤ D, x̂i ∈ Rn, ŷi ∈ Rm

• Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

• f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1
• Each Ti affine: Ti(y) = Aiy+ bi. Example σ(t) = max{0, t} (ReLu)
• A1 is n× w, Ak+1 is w×m, Ai is w× w otherwise.

mn

1

2

1

2

1 2 k

any architecture

up to w nodes per hidden layer
7

What we know for Neural Nets

Hardness Result

Problem: Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

where f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1

Theorem (Blum and Rivest 1992)

When ℓ ∈ (absolute value, 2-norm squared) training is NP-hard even
if k = 1 (only 3 nodes), D ∈ O(n), m = 1, x̂i ∈ {0, 1}n, ŷi ∈ {0, 1} and
weights are ±1.

...

8

Hardness Result

Problem: Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

where f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1

Theorem (Blum and Rivest 1992)

When ℓ ∈ (absolute value, 2-norm squared) training is NP-hard even
if k = 1 (only 3 nodes), D ∈ O(n), m = 1, x̂i ∈ {0, 1}n, ŷi ∈ {0, 1} and
weights are ±1.

...

8

Hardness Result

Problem: Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

where f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1

Theorem (Blum and Rivest 1992)

When ℓ ∈ (absolute value, 2-norm squared) training is NP-hard even
if k = 1 (only 3 nodes), D ∈ O(n), m = 1, x̂i ∈ {0, 1}n, ŷi ∈ {0, 1} and
weights are ±1.

...

8

Exact Training Complexity

Problem: Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

where f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1

Theorem (Goel Kanade Klivans Thaler 2016)

(Abridged!) There is an algorithm for improper learning of networks
of ReLUs

• Running time is (more than) doubly exponential in e.g. number
of layers.

• For two layers, exponential in ϵ−Θ(1) and polynomial in D

9

Exact Training Complexity

Problem: Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

where f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1

Theorem (Goel Kanade Klivans Thaler 2016)

(Abridged!) There is an algorithm for improper learning of networks
of ReLUs

• Running time is (more than) doubly exponential in e.g. number
of layers.

• For two layers, exponential in ϵ−Θ(1) and polynomial in D

9

Exact Training Complexity

Problem: Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

where f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1

Theorem (Goel Kanade Klivans Thaler 2016)

(Abridged!) There is an algorithm for improper learning of networks
of ReLUs

• Running time is (more than) doubly exponential in e.g. number
of layers.

• For two layers, exponential in ϵ−Θ(1) and polynomial in D

9

Exact Training Complexity

Problem: Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

where f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1

Theorem (Goel Kanade Klivans Thaler 2016)

(Abridged!) There is an algorithm for improper learning of networks
of ReLUs

• Running time is (more than) doubly exponential in e.g. number
of layers.

• For two layers, exponential in ϵ−Θ(1) and polynomial in D

9

Exact Training Complexity

Problem: Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

where f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1

Theorem (Arora Basu Mianjy Mukherjee 2018)

If k = 1 (one “hidden layer”) there is an exact training algorithm of
complexity

O (2wDnwpoly(D,n,w))

Polynomial in the size D of the data set, for fixed n,w.

n = dimension of input vectors, w = size of internal layers

10

Exact Training Complexity

Problem: Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

where f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1

Theorem (Arora Basu Mianjy Mukherjee 2018)

If k = 1 (one “hidden layer”) there is an exact training algorithm of
complexity

O (2wDnwpoly(D,n,w))

Polynomial in the size D of the data set, for fixed n,w.

n = dimension of input vectors, w = size of internal layers

10

Exact Training Complexity

Problem: Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

where f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1

Theorem (Arora Basu Mianjy Mukherjee 2018)

If k = 1 (one “hidden layer”) there is an exact training algorithm of
complexity

O (2wDnwpoly(D,n,w))

Polynomial in the size D of the data set, for fixed n,w.

n = dimension of input vectors, w = size of internal layers

10

Exact Training Complexity

Problem: Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

where f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1

Theorem (Arora Basu Mianjy Mukherjee 2018)

If k = 1 (one “hidden layer”) there is an exact training algorithm of
complexity

O (2wDnwpoly(D,n,w))

Polynomial in the size D of the data set, for fixed n,w.

n = dimension of input vectors,

w = size of internal layers

10

Exact Training Complexity

Problem: Compute f : Rn → Rm to minimize

1
D

D∑
i=1

∥ŷi − f(x̂i)∥
2

where f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1

Theorem (Arora Basu Mianjy Mukherjee 2018)

If k = 1 (one “hidden layer”) there is an exact training algorithm of
complexity

O (2wDnwpoly(D,n,w))

Polynomial in the size D of the data set, for fixed n,w.

n = dimension of input vectors, w = size of internal layers

10

Theorem
For every ϵ > 0, ℓ, Θ ⊆ [−1, 1]N and D, there is a polytope with
variables (θ, xi, yi, Li) of size

O
(
(2L/ϵ)N+n+m+1 D

)
(L = largest Lipshitz constant of any σ, and N = O(wk))

s.t. ∀ data set (X̂, Ŷ) = (x̂i, ŷi), i = 1, . . .D, there is a face FX̂,Ŷ with

min
θ∈Θ

1
D

D∑
i=1

Li

(θ, L) ∈ proj(FX̂,Ŷ)

provides an ϵ-approximation to ERM with data X̂, Ŷ.

A uniform (“universal”) linear program of size linear in the quantity
of training data.

11

Theorem
For every ϵ > 0, ℓ, Θ ⊆ [−1, 1]N and D, there is a polytope with
variables (θ, xi, yi, Li) of size

O
(
(2L/ϵ)N+n+m+1 D

)
(L = largest Lipshitz constant of any σ, and N = O(wk))
s.t. ∀ data set (X̂, Ŷ) = (x̂i, ŷi), i = 1, . . .D, there is a face FX̂,Ŷ with

min
θ∈Θ

1
D

D∑
i=1

Li

(θ, L) ∈ proj(FX̂,Ŷ)

provides an ϵ-approximation to ERM with data X̂, Ŷ.

A uniform (“universal”) linear program of size linear in the quantity
of training data.

11

Our main toolset

Treewidth

Treewidth is a parameter that measures how tree-like a graph is.

Definition
The treewidth of graph G, is the smallest clique number of any
chordal supergraph of G, minus 1.

• OLD concept, but term coined by Robertson and Seymour
(1980s).

• Informal definition: graphs with small treewidth are the “simple”
graphs

• Many equivalent definitions.
• Trees have treewidth 1
• Cycles have treewidth 2
• Kn has treewidth n− 1
• the k× k planar grid has treewidth k

12

Treewidth

Treewidth is a parameter that measures how tree-like a graph is.

Definition
The treewidth of graph G, is the smallest clique number of any
chordal supergraph of G, minus 1.

• OLD concept, but term coined by Robertson and Seymour
(1980s).

• Informal definition: graphs with small treewidth are the “simple”
graphs

• Many equivalent definitions.
• Trees have treewidth 1
• Cycles have treewidth 2
• Kn has treewidth n− 1
• the k× k planar grid has treewidth k

12

Treewidth

Treewidth is a parameter that measures how tree-like a graph is.

Definition
The treewidth of graph G, is the smallest clique number of any
chordal supergraph of G, minus 1.

• OLD concept, but term coined by Robertson and Seymour
(1980s).

• Informal definition: graphs with small treewidth are the “simple”
graphs

• Many equivalent definitions.
• Trees have treewidth 1
• Cycles have treewidth 2
• Kn has treewidth n− 1
• the k× k planar grid has treewidth k

12

Treewidth

Informal algorithmic definition:

• Start with with m “bags” with up to ω + 1 vertices each,
numbered 1, 2, . . . ,m. “Bag” = graph.

• Each bag includes some edges between vertices in the bag.
• Start of procedure: each bag is a “processed unit”. All vertices
are “boundary” vertices.

• Inductive step: take two processed units. Idenfify (“glue”) some
of the boundary with the same number of vertices in one unit
with same number of boundary vertices of the other, forming a
new processing unit.

• The boundary of the new unit will be a subset of the union of
the two boundaries, of size ≤ ω + 1

13

Treewidth

Informal algorithmic definition:

• Start with with m “bags” with up to ω + 1 vertices each,
numbered 1, 2, . . . ,m. “Bag” = graph.

• Each bag includes some edges between vertices in the bag.
• Start of procedure: each bag is a “processed unit”. All vertices
are “boundary” vertices.

• Inductive step: take two processed units. Idenfify (“glue”) some
of the boundary with the same number of vertices in one unit
with same number of boundary vertices of the other, forming a
new processing unit.

• The boundary of the new unit will be a subset of the union of
the two boundaries, of size ≤ ω + 1

13

Treewidth

14

Treewidth: literature review

Treewidth is a parameter that measures how tree-like a graph is.

Definition
The treewidth of graph G, is the smallest clique number of any
chordal supergraph of G, minus 1.

• Intersection graph of subtrees of a tree, Robertson and Seymour
(1980s).

• Core concept in proof of Wagner Conjecture, 1984-2002.
• Early result: given a planar graph H any graph with no H minor has
tree-width at most f(H).

• “K-trees”, perfect graph literature, (1970s and after)
• Junction tree theorem, Lauritzen (1996), Pearle (1982). Graphical
Models, Belief Propagation.

• Nonserial Dynamic Programming, Nemhauser (1964). Bertele and
Brioschi (1972).

15

Treewidth: literature review

Treewidth is a parameter that measures how tree-like a graph is.

Definition
The treewidth of graph G, is the smallest clique number of any
chordal supergraph of G, minus 1.

• Intersection graph of subtrees of a tree, Robertson and Seymour
(1980s).

• Core concept in proof of Wagner Conjecture, 1984-2002.
• Early result: given a planar graph H any graph with no H minor has
tree-width at most f(H).

• “K-trees”, perfect graph literature, (1970s and after)
• Junction tree theorem, Lauritzen (1996), Pearle (1982). Graphical
Models, Belief Propagation.

• Nonserial Dynamic Programming, Nemhauser (1964). Bertele and
Brioschi (1972).

15

Treewidth: literature review

Treewidth is a parameter that measures how tree-like a graph is.

Definition
The treewidth of graph G, is the smallest clique number of any
chordal supergraph of G, minus 1.

• Intersection graph of subtrees of a tree, Robertson and Seymour
(1980s).

• Core concept in proof of Wagner Conjecture, 1984-2002.
• Early result: given a planar graph H any graph with no H minor has
tree-width at most f(H).

• “K-trees”, perfect graph literature, (1970s and after)
• Junction tree theorem, Lauritzen (1996), Pearle (1982). Graphical
Models, Belief Propagation.

• Nonserial Dynamic Programming, Nemhauser (1964). Bertele and
Brioschi (1972).

15

Treewidth: literature review

Treewidth is a parameter that measures how tree-like a graph is.

Definition
The treewidth of graph G, is the smallest clique number of any
chordal supergraph of G, minus 1.

• Intersection graph of subtrees of a tree, Robertson and Seymour
(1980s).

• Core concept in proof of Wagner Conjecture, 1984-2002.
• Early result: given a planar graph H any graph with no H minor has
tree-width at most f(H).

• “K-trees”, perfect graph literature, (1970s and after)

• Junction tree theorem, Lauritzen (1996), Pearle (1982). Graphical
Models, Belief Propagation.

• Nonserial Dynamic Programming, Nemhauser (1964). Bertele and
Brioschi (1972).

15

Treewidth: literature review

Treewidth is a parameter that measures how tree-like a graph is.

Definition
The treewidth of graph G, is the smallest clique number of any
chordal supergraph of G, minus 1.

• Intersection graph of subtrees of a tree, Robertson and Seymour
(1980s).

• Core concept in proof of Wagner Conjecture, 1984-2002.
• Early result: given a planar graph H any graph with no H minor has
tree-width at most f(H).

• “K-trees”, perfect graph literature, (1970s and after)
• Junction tree theorem, Lauritzen (1996), Pearle (1982). Graphical
Models, Belief Propagation.

• Nonserial Dynamic Programming, Nemhauser (1964). Bertele and
Brioschi (1972).

15

Treewidth: literature review

Treewidth is a parameter that measures how tree-like a graph is.

Definition
The treewidth of graph G, is the smallest clique number of any
chordal supergraph of G, minus 1.

• Intersection graph of subtrees of a tree, Robertson and Seymour
(1980s).

• Core concept in proof of Wagner Conjecture, 1984-2002.
• Early result: given a planar graph H any graph with no H minor has
tree-width at most f(H).

• “K-trees”, perfect graph literature, (1970s and after)
• Junction tree theorem, Lauritzen (1996), Pearle (1982). Graphical
Models, Belief Propagation.

• Nonserial Dynamic Programming, Nemhauser (1964). Bertele and
Brioschi (1972).

15

Second tool: approximation through digitization

Let 0 ≤ z ≤ 1 and let L > 0 integral
Then we can approximate

z ≈
∑L

k=1 2−k yk, where each yk binary.

Error ≤ 2−L

• Suppose F : Rm → R with Lipschitz constant L

• Digitize (approximate) each component of x ∈ Rm

• So x → y (the binary approximation). y ∈ RmL

• And F(x) replaced by F̂(y)

• F̂(y) ≤ F(x) + mL 2−L

16

Second tool: approximation through digitization

Let 0 ≤ z ≤ 1 and let L > 0 integral
Then we can approximate

z ≈
∑L

k=1 2−k yk, where each yk binary. Error ≤ 2−L

• Suppose F : Rm → R with Lipschitz constant L

• Digitize (approximate) each component of x ∈ Rm

• So x → y (the binary approximation). y ∈ RmL

• And F(x) replaced by F̂(y)

• F̂(y) ≤ F(x) + mL 2−L

16

Second tool: approximation through digitization

Let 0 ≤ z ≤ 1 and let L > 0 integral
Then we can approximate

z ≈
∑L

k=1 2−k yk, where each yk binary. Error ≤ 2−L

• Suppose F : Rm → R with Lipschitz constant L

• Digitize (approximate) each component of x ∈ Rm

• So x → y (the binary approximation). y ∈ RmL

• And F(x) replaced by F̂(y)

• F̂(y) ≤ F(x) + mL 2−L

16

Second tool: approximation through digitization

Let 0 ≤ z ≤ 1 and let L > 0 integral
Then we can approximate

z ≈
∑L

k=1 2−k yk, where each yk binary. Error ≤ 2−L

• Suppose F : Rm → R with Lipschitz constant L

• Digitize (approximate) each component of x ∈ Rm

• So x → y (the binary approximation). y ∈ RmL

• And F(x) replaced by F̂(y)

• F̂(y) ≤ F(x) + mL 2−L

16

Second tool: approximation through digitization

Let 0 ≤ z ≤ 1 and let L > 0 integral
Then we can approximate

z ≈
∑L

k=1 2−k yk, where each yk binary. Error ≤ 2−L

• Suppose F : Rm → R with Lipschitz constant L

• Digitize (approximate) each component of x ∈ Rm

• So x → y (the binary approximation). y ∈ RmL

• And F(x) replaced by F̂(y)

• F̂(y) ≤ F(x) + mL 2−L

16

Second tool: approximation through digitization

Let 0 ≤ z ≤ 1 and let L > 0 integral
Then we can approximate

z ≈
∑L

k=1 2−k yk, where each yk binary. Error ≤ 2−L

• Suppose F : Rm → R with Lipschitz constant L

• Digitize (approximate) each component of x ∈ Rm

• So x → y (the binary approximation). y ∈ RmL

• And F(x) replaced by F̂(y)

• F̂(y) ≤ F(x) + mL 2−L

16

Second tool: approximation through digitization

Let 0 ≤ z ≤ 1 and let L > 0 integral
Then we can approximate

z ≈
∑L

k=1 2−k yk, where each yk binary. Error ≤ 2−L

• Suppose F : Rm → R with Lipschitz constant L

• Digitize (approximate) each component of x ∈ Rm

• So x → y (the binary approximation). y ∈ RmL

• And F(x) replaced by F̂(y)

• F̂(y) ≤ F(x) + mL 2−L

16

Final ingredient: lifted formulations

Lovász and Schrijver, Sherali and Adams, ∼ 1990

• 0/1 integer programming:

{x ∈ {0, 1}n : Ax ≤ b}
• Key idea: add new variables that express conjunctions:

• x[{1, 2}, {3}] which equals 1 iff x1 = x2 = 1 and x3 = 0
• Same as monomial x1x2(1− x3)
• can strengthen the formulation, e.g. if
2x1 + x3 + x4 ≤ 1 is a constraint of Ax ≤ b
then can say: 2x[{1, 2}, {3}] + x[{1, 2, 4}, {3}] ≤ x[{1, 2}, {3}]

• And more, e.g. x[{1, 2}, {3}] + x[{1}, {2, 3}] = x[{1}, {3}]
• “Level-k” formulation: only use monomials with up to k terms

Theorem: (2004)
Consider {x ∈ {0, 1}n : Ax ≤ b} where A ≥ 0 (a packing problem).
then “level-k” formulation implies all valid inequalities cTx ≤ d
where the subgraph of the intersection graph of A, induced by c
has treewidth ≤ k

17

Final ingredient: lifted formulations

Lovász and Schrijver, Sherali and Adams, ∼ 1990

• 0/1 integer programming: {x ∈ {0, 1}n : Ax ≤ b}
• Key idea: add new variables that express conjunctions:

• x[{1, 2}, {3}] which equals 1 iff x1 = x2 = 1 and x3 = 0
• Same as monomial x1x2(1− x3)
• can strengthen the formulation, e.g. if
2x1 + x3 + x4 ≤ 1 is a constraint of Ax ≤ b
then can say: 2x[{1, 2}, {3}] + x[{1, 2, 4}, {3}] ≤ x[{1, 2}, {3}]

• And more, e.g. x[{1, 2}, {3}] + x[{1}, {2, 3}] = x[{1}, {3}]
• “Level-k” formulation: only use monomials with up to k terms

Theorem: (2004)
Consider {x ∈ {0, 1}n : Ax ≤ b} where A ≥ 0 (a packing problem).
then “level-k” formulation implies all valid inequalities cTx ≤ d
where the subgraph of the intersection graph of A, induced by c
has treewidth ≤ k

17

Final ingredient: lifted formulations

Lovász and Schrijver, Sherali and Adams, ∼ 1990

• 0/1 integer programming: {x ∈ {0, 1}n : Ax ≤ b}
• Key idea: add new variables that express conjunctions:

• x[{1, 2}, {3}] which equals 1 iff x1 = x2 = 1 and x3 = 0

• Same as monomial x1x2(1− x3)
• can strengthen the formulation, e.g. if
2x1 + x3 + x4 ≤ 1 is a constraint of Ax ≤ b
then can say: 2x[{1, 2}, {3}] + x[{1, 2, 4}, {3}] ≤ x[{1, 2}, {3}]

• And more, e.g. x[{1, 2}, {3}] + x[{1}, {2, 3}] = x[{1}, {3}]
• “Level-k” formulation: only use monomials with up to k terms

Theorem: (2004)
Consider {x ∈ {0, 1}n : Ax ≤ b} where A ≥ 0 (a packing problem).
then “level-k” formulation implies all valid inequalities cTx ≤ d
where the subgraph of the intersection graph of A, induced by c
has treewidth ≤ k

17

Final ingredient: lifted formulations

Lovász and Schrijver, Sherali and Adams, ∼ 1990

• 0/1 integer programming: {x ∈ {0, 1}n : Ax ≤ b}
• Key idea: add new variables that express conjunctions:

• x[{1, 2}, {3}] which equals 1 iff x1 = x2 = 1 and x3 = 0
• Same as monomial x1x2(1− x3)

• can strengthen the formulation, e.g. if
2x1 + x3 + x4 ≤ 1 is a constraint of Ax ≤ b
then can say: 2x[{1, 2}, {3}] + x[{1, 2, 4}, {3}] ≤ x[{1, 2}, {3}]

• And more, e.g. x[{1, 2}, {3}] + x[{1}, {2, 3}] = x[{1}, {3}]
• “Level-k” formulation: only use monomials with up to k terms

Theorem: (2004)
Consider {x ∈ {0, 1}n : Ax ≤ b} where A ≥ 0 (a packing problem).
then “level-k” formulation implies all valid inequalities cTx ≤ d
where the subgraph of the intersection graph of A, induced by c
has treewidth ≤ k

17

Final ingredient: lifted formulations

Lovász and Schrijver, Sherali and Adams, ∼ 1990

• 0/1 integer programming: {x ∈ {0, 1}n : Ax ≤ b}
• Key idea: add new variables that express conjunctions:

• x[{1, 2}, {3}] which equals 1 iff x1 = x2 = 1 and x3 = 0
• Same as monomial x1x2(1− x3)
• can strengthen the formulation, e.g. if
2x1 + x3 + x4 ≤ 1 is a constraint of Ax ≤ b
then can say: 2x[{1, 2}, {3}] + x[{1, 2, 4}, {3}] ≤ x[{1, 2}, {3}]

• And more, e.g. x[{1, 2}, {3}] + x[{1}, {2, 3}] = x[{1}, {3}]
• “Level-k” formulation: only use monomials with up to k terms

Theorem: (2004)
Consider {x ∈ {0, 1}n : Ax ≤ b} where A ≥ 0

(a packing problem).
then “level-k” formulation implies all valid inequalities cTx ≤ d
where the subgraph of the intersection graph of A, induced by c
has treewidth ≤ k

17

Final ingredient: lifted formulations

Lovász and Schrijver, Sherali and Adams, ∼ 1990

• 0/1 integer programming: {x ∈ {0, 1}n : Ax ≤ b}
• Key idea: add new variables that express conjunctions:

• x[{1, 2}, {3}] which equals 1 iff x1 = x2 = 1 and x3 = 0
• Same as monomial x1x2(1− x3)
• can strengthen the formulation, e.g. if
2x1 + x3 + x4 ≤ 1 is a constraint of Ax ≤ b
then can say: 2x[{1, 2}, {3}] + x[{1, 2, 4}, {3}] ≤ x[{1, 2}, {3}]

• And more, e.g. x[{1, 2}, {3}] + x[{1}, {2, 3}] = x[{1}, {3}]
• “Level-k” formulation: only use monomials with up to k terms

Theorem: (2004)
Consider {x ∈ {0, 1}n : Ax ≤ b} where A ≥ 0 (a packing problem).

then “level-k” formulation implies all valid inequalities cTx ≤ d
where the subgraph of the intersection graph of A, induced by c
has treewidth ≤ k

17

Final ingredient: lifted formulations

Lovász and Schrijver, Sherali and Adams, ∼ 1990

• 0/1 integer programming: {x ∈ {0, 1}n : Ax ≤ b}
• Key idea: add new variables that express conjunctions:

• x[{1, 2}, {3}] which equals 1 iff x1 = x2 = 1 and x3 = 0
• Same as monomial x1x2(1− x3)
• can strengthen the formulation, e.g. if
2x1 + x3 + x4 ≤ 1 is a constraint of Ax ≤ b
then can say: 2x[{1, 2}, {3}] + x[{1, 2, 4}, {3}] ≤ x[{1, 2}, {3}]

• And more, e.g. x[{1, 2}, {3}] + x[{1}, {2, 3}] = x[{1}, {3}]
• “Level-k” formulation: only use monomials with up to k terms

Theorem: (2004)
Consider {x ∈ {0, 1}n : Ax ≤ b} where A ≥ 0 (a packing problem).
then “level-k” formulation implies all valid inequalities cTx ≤ d

where the subgraph of the intersection graph of A, induced by c
has treewidth ≤ k

17

Final ingredient: lifted formulations

Lovász and Schrijver, Sherali and Adams, ∼ 1990

• 0/1 integer programming: {x ∈ {0, 1}n : Ax ≤ b}
• Key idea: add new variables that express conjunctions:

• x[{1, 2}, {3}] which equals 1 iff x1 = x2 = 1 and x3 = 0
• Same as monomial x1x2(1− x3)
• can strengthen the formulation, e.g. if
2x1 + x3 + x4 ≤ 1 is a constraint of Ax ≤ b
then can say: 2x[{1, 2}, {3}] + x[{1, 2, 4}, {3}] ≤ x[{1, 2}, {3}]

• And more, e.g. x[{1, 2}, {3}] + x[{1}, {2, 3}] = x[{1}, {3}]
• “Level-k” formulation: only use monomials with up to k terms

Theorem: (2004)
Consider {x ∈ {0, 1}n : Ax ≤ b} where A ≥ 0 (a packing problem).
then “level-k” formulation implies all valid inequalities cTx ≤ d
where the subgraph of the intersection graph of A,

induced by c
has treewidth ≤ k

17

Final ingredient: lifted formulations

Lovász and Schrijver, Sherali and Adams, ∼ 1990

• 0/1 integer programming: {x ∈ {0, 1}n : Ax ≤ b}
• Key idea: add new variables that express conjunctions:

• x[{1, 2}, {3}] which equals 1 iff x1 = x2 = 1 and x3 = 0
• Same as monomial x1x2(1− x3)
• can strengthen the formulation, e.g. if
2x1 + x3 + x4 ≤ 1 is a constraint of Ax ≤ b
then can say: 2x[{1, 2}, {3}] + x[{1, 2, 4}, {3}] ≤ x[{1, 2}, {3}]

• And more, e.g. x[{1, 2}, {3}] + x[{1}, {2, 3}] = x[{1}, {3}]
• “Level-k” formulation: only use monomials with up to k terms

Theorem: (2004)
Consider {x ∈ {0, 1}n : Ax ≤ b} where A ≥ 0 (a packing problem).
then “level-k” formulation implies all valid inequalities cTx ≤ d
where the subgraph of the intersection graph of A, induced by c

has treewidth ≤ k

17

Final ingredient: lifted formulations

Lovász and Schrijver, Sherali and Adams, ∼ 1990

• 0/1 integer programming: {x ∈ {0, 1}n : Ax ≤ b}
• Key idea: add new variables that express conjunctions:

• x[{1, 2}, {3}] which equals 1 iff x1 = x2 = 1 and x3 = 0
• Same as monomial x1x2(1− x3)
• can strengthen the formulation, e.g. if
2x1 + x3 + x4 ≤ 1 is a constraint of Ax ≤ b
then can say: 2x[{1, 2}, {3}] + x[{1, 2, 4}, {3}] ≤ x[{1, 2}, {3}]

• And more, e.g. x[{1, 2}, {3}] + x[{1}, {2, 3}] = x[{1}, {3}]
• “Level-k” formulation: only use monomials with up to k terms

Theorem: (2004)
Consider {x ∈ {0, 1}n : Ax ≤ b} where A ≥ 0 (a packing problem).
then “level-k” formulation implies all valid inequalities cTx ≤ d
where the subgraph of the intersection graph of A, induced by c
has treewidth ≤ k

17

Approximate optimization of well-behaved functions

Prototype problem:

c∗ .
= min cTx

s.t. fi(x) ≤ 0, i = 1, . . . ,m
x ∈ [0, 1]n

An extension of work in Bienstock and Muñoz (2015).

Theorem
Suppose the intersection graph has tree-width ω and let L = maxi Li.

Then, for every ϵ > 0 there is an LP relaxation of size

O
(
(L/ϵ)ω+1 n

)
that guarantees ϵ-optimality and -feasibility errors.

cTx̂ ≤ c∗ + O(ϵ), fi(x̂) ≤ O(ϵ) ∀i

18

Approximate optimization of well-behaved functions

Prototype problem:

c∗ .
= min cTx

s.t. fi(x) ≤ 0, i = 1, . . . ,m
x ∈ [0, 1]n

An extension of work in Bienstock and Muñoz (2015).

Theorem
Suppose the intersection graph has tree-width ω and let L = maxi Li.
Then, for every ϵ > 0 there is an LP relaxation of size

O
(
(L/ϵ)ω+1 n

)
that guarantees ϵ-optimality and -feasibility errors.

cTx̂ ≤ c∗ + O(ϵ), fi(x̂) ≤ O(ϵ) ∀i

18

Approximate optimization of well-behaved functions

Prototype problem:

c∗ .
= min cTx

s.t. fi(x) ≤ 0, i = 1, . . . ,m
x ∈ [0, 1]n

An extension of work in Bienstock and Muñoz (2015).

Theorem
Suppose the intersection graph has tree-width ω and let L = maxi Li.
Then, for every ϵ > 0 there is an LP relaxation of size

O
(
(L/ϵ)ω+1 n

)
that guarantees ϵ-optimality and -feasibility errors.

cTx̂ ≤ c∗ + O(ϵ), fi(x̂) ≤ O(ϵ) ∀i

18

Application to ERM problem

We now apply the LP approximation result to:

min
θ∈Θ

1
D

D∑
i=1

ℓ(f(x̂i, θ), ŷi) 1 ≤ i ≤ D

with Θ ⊆ [−1, 1]N, x̂i ∈ [−1, 1]n and ŷi ∈ [−1, 1]m.

We use the epigraph
formulation:

min
θ∈Θ

1
D

D∑
i=1

Li

Li ≥ ℓ(f(x̂i, θ), ŷi) 1 ≤ i ≤ D

Let L be the Lipschitz constant for g(x, y, θ) .
= ℓ(f(x, θ), y) over

[−1, 1]n+m+N.

19

Application to ERM problem

We now apply the LP approximation result to:

min
θ∈Θ

1
D

D∑
i=1

ℓ(f(x̂i, θ), ŷi) 1 ≤ i ≤ D

with Θ ⊆ [−1, 1]N, x̂i ∈ [−1, 1]n and ŷi ∈ [−1, 1]m. We use the epigraph
formulation:

min
θ∈Θ

1
D

D∑
i=1

Li

Li ≥ ℓ(f(x̂i, θ), ŷi) 1 ≤ i ≤ D

Let L be the Lipschitz constant for g(x, y, θ) .
= ℓ(f(x, θ), y) over

[−1, 1]n+m+N.

19

Proof Sketch

Every system of constraints of the type

Li ≥ ℓ(f(xi, θ), yi) 1 ≤ i ≤ D

has an intersection graph with the following structure:

θ

x
y y

x1

1

L1

L2

2

2

L

x

D

D
Dy

resulting in a formulation with treewidth at most N+ n+m+ 1

20

LP size details

Thus the LP size given by the expression

O
(
(L/ϵ)ω+1 n

)
becomes

O
(
(2L/ϵ)N+n+m+1 D

)

The key to linear dependence on D lies in the fact that the D does
not add to the treewidth.

Different architectures → N and L.

21

LP size details

Thus the LP size given by the expression

O
(
(L/ϵ)ω+1 n

)
becomes

O
(
(2L/ϵ)N+n+m+1 D

)

The key to linear dependence on D lies in the fact that the D does
not add to the treewidth.

Different architectures → N and L.

21

LP size details

Thus the LP size given by the expression

O
(
(L/ϵ)ω+1 n

)
becomes

O
(
(2L/ϵ)N+n+m+1 D

)

The key to linear dependence on D lies in the fact that the D does
not add to the treewidth.

Different architectures → N and L.

21

Architecture-Specific
Consequences

Training of Deep Neural Networks with ReLUs

Theorem (Arora, Basu, Mianjy and Mukherjee 2018)
If k = 1 (one “hidden layer”) and m = 1 there is an exact training
algorithm of complexity

O (2wDnwpoly(D,n,w))

Polynomial in the size of the data set, for fixed n,w.

22

Training of Deep Neural Networks with ReLUs

Theorem (Arora, Basu, Mianjy and Mukherjee 2018)
If k = 1 (one “hidden layer”) and m = 1 there is an exact training
algorithm of complexity

O (2wDnwpoly(D,n,w))

Polynomial in the size of the data set, for fixed n,w.

22

Consequence of our result

If the entries of Ai,bi are required to be in [−1, 1], for any k,n,m,w, ϵ
there is a uniform LP of size

O
(
(nw/ϵ)k(n+m+N+1) D

)
with the same guarantees as before.

Core of the proof: In a DNN with k hidden layers the Lipschitz
constant of g(x, y, θ) over [−1, 1]n+m+N is ∼ nwk.

23

Consequence of our result

If the entries of Ai,bi are required to be in [−1, 1], for any k,n,m,w, ϵ
there is a uniform LP of size

O
(
(nw/ϵ)k(n+m+N+1) D

)
with the same guarantees as before.

Core of the proof: In a DNN with k hidden layers the Lipschitz
constant of g(x, y, θ) over [−1, 1]n+m+N is ∼ nwk.

23

Consequence of our result

If the entries of Ai,bi are required to be in [−1, 1], for any k,n,m,w, ϵ
there is a uniform LP of size

O
(
(nw/ϵ)k(n+m+N+1) D

)
with the same guarantees as before.

Core of the proof: In a DNN with k hidden layers the Lipschitz
constant of g(x, y, θ) over [−1, 1]n+m+N is ∼ nwk.

23

The Blum-Rivest setup (Binarized Neural Networks)

Activation units:

...
y

a1, . . . ,am,b

z1

z2
zm

With z ∈ {0, 1}m,

y =

{
1, if aTz > b
0, otherwise.

Network with n binary inputs, m binary outputs, k layers

24

The Blum-Rivest setup (Binarized Neural Networks)

Activation units:

...
y

a1, . . . ,am,b

z1

z2
zm

With z ∈ {0, 1}m,

y =

{
1, if aTz > b
0, otherwise.

Network with n binary inputs, m binary outputs, k layers

24

The Blum-Rivest setup (Binarized Neural Networks)

Activation units:

...
y

a1, . . . ,am,b

z1

z2
zm

With z ∈ {0, 1}m,

y =

{
1, if aTz > b
0, otherwise.

Network with n binary inputs, m binary outputs, k layers

24

The Blum-Rivest setup (Binarized Neural Networks)

Theorem (Blum and Rivest 1992)
When ℓ ∈ (absolute value, 2-norm squared) training is NP-hard even
if k = 1 (only 3 nodes), D ∈ O(n), m = 1 and weights are ±1.

...

25

Our result on Binarized Neural Networks

Theorem
Consider a BNN with m = 1 and ℓ arbitrary. There is a uniform LP of
size

O(2poly(k,n,w)D)

that solves ERM exactly for any input data.

26

Concluding comments

• The results can be improved by considering the sparsity of the
network itself.

• Training using this approach generalizes. Meaning, using
enough1 data points we get an approximation to the “true” Risk
Minimization problem.

1depends on L and ϵ

27

Thank you!

27

Did we say something about practicality?

We are solving Linear Programs. There are classical examples of
linear programs that are solved incrementally.

• Only a small fraction (sublinear) of the LP needs to be
constructed

• Example 1: Edmonds’ weighted matching algorithm (bah, that is
theory only)

• Example 2: Solving large set-partitioning LPs (airline industry)
• This requires tricks that exploit LP structure. It only works with
LPs that have specific, known structure

• That is the case in the above LPs.

28

Did we say something about practicality?

We are solving Linear Programs. There are classical examples of
linear programs that are solved incrementally.

• Only a small fraction (sublinear) of the LP needs to be
constructed

• Example 1: Edmonds’ weighted matching algorithm (bah, that is
theory only)

• Example 2: Solving large set-partitioning LPs (airline industry)
• This requires tricks that exploit LP structure. It only works with
LPs that have specific, known structure

• That is the case in the above LPs.

28

Did we say something about practicality?

We are solving Linear Programs. There are classical examples of
linear programs that are solved incrementally.

• Only a small fraction (sublinear) of the LP needs to be
constructed

• Example 1: Edmonds’ weighted matching algorithm (bah, that is
theory only)

• Example 2: Solving large set-partitioning LPs (airline industry)
• This requires tricks that exploit LP structure. It only works with
LPs that have specific, known structure

• That is the case in the above LPs.

28

Did we say something about practicality?

We are solving Linear Programs. There are classical examples of
linear programs that are solved incrementally.

• Only a small fraction (sublinear) of the LP needs to be
constructed

• Example 1: Edmonds’ weighted matching algorithm (bah, that is
theory only)

• Example 2: Solving large set-partitioning LPs (airline industry)

• This requires tricks that exploit LP structure. It only works with
LPs that have specific, known structure

• That is the case in the above LPs.

28

Did we say something about practicality?

We are solving Linear Programs. There are classical examples of
linear programs that are solved incrementally.

• Only a small fraction (sublinear) of the LP needs to be
constructed

• Example 1: Edmonds’ weighted matching algorithm (bah, that is
theory only)

• Example 2: Solving large set-partitioning LPs (airline industry)
• This requires tricks that exploit LP structure. It only works with
LPs that have specific, known structure

• That is the case in the above LPs.

28

Thu.Nov..8.214048.2018@blacknwhite

28

	What we know for Neural Nets
	Our main toolset
	Architecture-Specific Consequences

