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setup

model: q︸︷︷︸
response

= g( θ1, . . . , θp︸ ︷︷ ︸
parameters

)

typically

I g is a computer code
I parameters are uncertain
I p is large1

1not necessarily in the "statistical" sense



sensitivity analysis (q = g(θ))

we want to:

quantify how uncertainties in the model response can
be apportioned to uncertainties in model inputs

the larger the contribution, the more important the input



rationale for SA (inspired by Saltelli)

I model corroboration: is the inference robust?
I research prioritization: which factor most deserves further

analysis/measurement?
I model simplification: can factors/compartments be fixed or

simplified?
I model reliability: identify factors which interact and may

lead to extreme values



GSA challenges

I no agreement on the meaning of important
I one SA method⇔ one definition of "importance"
I inputs can be correlated
I GSA results depend on how parameter uncertainty is

modeled; robustness?
I meaning of GSA for evolution pbs; causality?
I practical considerations⇒ use of surrogates (often):

I surrogate ≈ model ?⇒ GSA(surrogate) ≈ GSA(model)



importance?

I g(θ1, θ2) = sin2 βθ1 sin2 θ2 θi ∼ U(0,2π), i = 1,2
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I dashed lines: partial derivative importance
I solid lines: total Sobol’ indices
I only agree for β = 1!



GSA: lots of choices

I regression based
I variance based (Sobol’ indices)
I derivative based (Morris screening, . . . )
I game theoretic (Shapley values/effects)
I and many others. . .

this talk: (mostly) variance based



variance based GSA

Ilya Sobol’

I considers θi ’s as random
variables

I apportion to them their relative
contribution to the variance of
the response

I trivial example: q = a θ1 + b θ2, θi ∼ N(0, σ2
i ), a,b > 0

I q ∼ N(0, σ2
q) with σ2

q = a2σ2
1 + b2σ2

2

⇒ 1 =
a2σ2

1

a2σ2
1 + b2σ2

2︸ ︷︷ ︸
S1

+
b2σ2

2

a2σ2
1 + b2σ2

2︸ ︷︷ ︸
S2

I note the importance of the σi ’s!



total Sobol’ indices

law of total variance

var(E[q|θ∼i ]) + E[var(q|θ∼i)] = var(q)

and thus

var(q)− var(E[q|θ∼i ])︸ ︷︷ ︸
remaining variance if θ∼i were known

= E[var(q|θ∼i)]

I total index: Ti = E[var(q|θ∼i )]
var(q) = 1− var(E[q|θ∼i ])

var(q)



Ti = 0⇔ θi non-important

⇐:

θi non-import. ⇒ var(q|θ∼i) = 0⇒ E[var(q|θ∼i)] = 0⇒ Ti = 0

⇒:

Ti = 0⇒ E[var(q|θ∼i)] = 0 ⇒
var≥0

var(q|θ∼i) = 0⇒ θi not import.

Unimportance is important! (Art Owen)

I allows focus on key inputs
I potential for faster codes



ANOVA (Reader’s Digest version)

I assume θi , iid, θi ∼ U(0,1)

I split θ = (θi , θ∼i) and decompose g as

g(θ) = g0 + g1(θi) + g2(θ∼i) + g12(θi , θ∼i)

where
I g0 =

∫
g(θ) dθ,

I g1(θi ) =
∫

(g − g0) dθ∼i , g2(θ∼i ) =
∫

(g − g0) dθi
I g12 = remainder

I above functions have zero average⇒⊥⇒

var(q) =

∫
(g(θ)− g0)2 dθ =

∫
g(θ)2 dθ − g2

0

=

∫
g2

1 dθ︸ ︷︷ ︸
var(g1)

+

∫
g2

2 dθ︸ ︷︷ ︸
var(g2)

+

∫
g2

12 dθ︸ ︷︷ ︸
var(g12)



another way to look at things

equivalent definition:

Ti =
vari

var(q)︸ ︷︷ ︸
total index

; Si =
var(gi)

var(q)︸ ︷︷ ︸
1st order index

where

vari = var(g1) + var(g12) = total variance corresponding to θi

exercise:

vari =
1
2

∫∫
(

∂g
∂θi

(θ̂)(θi−θ′i )︷ ︸︸ ︷
g(θ)− g(θ′))2 dθ dθ′i

where θ′ = (θ1, . . . , θi−1, θ
′
i , θi+1, . . . , θp).



GSA and surrogates

I g = original model; ĝ surrogate
I S = sensitivity index
I question:

g ≈ ĝ ?⇒ S(g) ≈ S(ĝ)

I would this help?

|S(g)− S(ĝ)| ≤ C ‖g − ĝ‖



not really...
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g(θ) = sin(θ1) + 7 sin2(θ2) + 0.1 θ4
3 sin(θ1)

θi , i = 1,2,3, are independent, θi ∼ U(−π, π)



GSA and surrogates (II)

In

|S(g)− S(ĝ)| ≤ C ‖g − ĝ‖

need to replace ‖ · ‖ by weaker metric, more "aware of S"

exercises:
I equivalence class of functions with same Sobol indices =?
I can we find something cheap to compute and useful to

practioners?
I do it for p = 2...



physically based surrogates

I high cost stochastic model: q = g(θ, ω)

I low cost deterministic surrogate: q̂ = ĝ(θ)

ω: intrinsic stochasticity of g

I assume:
intrinsic stochasticity︸ ︷︷ ︸

aleatoric

"indep." of randomness of θ’s︸ ︷︷ ︸
epistemic

I example: chemical reaction networks



a question

I does this diagram commute?

q = g(θ, ω) S(ω)

q̂ = ĝ(θ) Ŝ

GSA

limiting process limiting process

GSA

I in general, no it doesn’t
I if limiting process = thermodynamic limit, yes, it does
I possible "justification" of S(ĝ) ≈ S(g)



chemical reaction networks: notation

I N reacting species, M reactions
I state vector X (t) = [X1(t), . . . ,XN(t)]T

I Xi(t) = # molecules of i-th species at time t

example: N = 3, M = 1

S1 + S2 → S3 ⇒ X (t) = X (0) + νR(t)

where
I ν =

[
−1 −1 1

]T
= stoichiometric vector

I R(t) = Y

∫ t
0 c X1(s)X2(s)︸ ︷︷ ︸

propensity function

ds





chemical reaction networks: general

X(t) = X(0) +
M∑

j=1

ν jYj
(
τj(t)

)
τj(t) =

∫ t

0
aj(X(s)) ds, j = 1, . . . ,M.

where
I νj : stoichiometric vector of j-th reaction
I Yj : indep. unit rate Poisson processes
I aj : propensity function of j-th reaction (⇐ Law of Mass

Action)



thermodynamic limit: system size→∞

I V = size of system = volume ×nA

I define V -dependent model in terms of concentrations
(scaling!) Z V = X V/V

I Z V a.s.→ Z where

dZ
dt

=
∑

j

νj āj(Z (t)) + C.I..

I Z V (t , θ, ω) state vector of stochastic chemical system
I Z (t , θ) corresponding deterministic limit
I QoIs: G(Z V (t , θ, ω)) and G(Z (t , θ)) with G(z(t)) = z(t∗) or

1
T

∫ T
0 z(t) dt



a result

Theorem (Merritt, Alexanderian, G., 2020)

Under mild technical assumptions

Sj(fV (·, ω))→ Sj(f ), as V →∞, ν − almost surely

where fv (θ, ω) = G(Z V (t , θ, ω)), f (θ) = G(Z (t , θ)) and (Ω,F , ν)
is the probability space carrying the intrinsic stochasticity of the
system



illustration: Michaelis-Menten

S + E k1−→ C

C k2−→ S + E

C
k3−→ P + E



Michaelis-Menten: histogram of Sobol indices



Michaelis-Menten: histogram of Sobol indices



another type of application: neuro-vascular models

picture from T. David et al.

I over-parametrized ODE
models

I ∼ 100 state variables
I hundreds of uncertain

parameters
I multiple time scales⇒

stiffness
I standard GSA methods

may be too expensive out
of the box⇒ screening

I "fuzzy" goals



disciplinary goals

I physiology: understand dominant cellular mechanisms
resulting in cerebral tissue perfusion after neuronal
stimulation

I diagnostics (understanding) rather than prognostics
(predictions)

I complexity: find the right balance between model
discrepancy and error propagation to minimize model error



method goals

I develop multi-level GSA approaches
I other notions of SA needed: see simplified kinetics

(Petzold, Zhu, 1999)



Perspectives and Conclusions

I here is the answer, what was the question?
I robustness and limitations of GSA
I lots of work to do in high dim approximation
I dimension reduction is key
I surrogate models: what to use?
I to solve a specific problem, quantitative experts and field

experts have to work together
I "cultural issues" (not everyone is happy with a linear model

with 10 parameters)


