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Randomized Algorithms

Solve a deterministic problem by statistical sampling

Monte Carlo Methods
Von Neumann & Ulam, Los Alamos, 1946

circle area ≈ 4 #hits
#darts

Simulated Annealing: global optimization



This Talk: The Ideas behind
Randomized Least Squares Solvers

Deterministic Least Squares Solvers

Kaczmarz: An Iterative Coordinate Descent Method

Effect of Sampling on Statistical Model Uncertainty

How to Do Randomized Sampling

An Overview of Randomized Least Squares/Regression

Randomized Row-wise Compression for Dense Matrices

A Randomized Right Preconditioner for Sparse Matrices

Probabilistic Bound for Deviation from Orthonormality

A few Take Aways, and Bibliography

Not discussed: Determinantal point processes



Deterministic Least Squares Solvers



Statistics: Linear Regression

Gaussian linear model

b = Ax0 + ε, ε ∼ N (0,σ2Im)

Given: Design matrix A ∈ Rm×n

Observation vector b ∈ Rm

Unknown: Parameter vector x0 ∈ Rn

Noise vector: ε has multivariate normal distribution

Minimize: Residual Sum of Squares

RSS(x) = (b − Ax)T (b − Ax) {superscript T is transpose}

Minimizer x∗ is maximum likelihood estimator of x0



Computational Mathematics: Least Squares

This talk: Well-posed least squares problems

Given: A ∈ Rm×n with rank(A) = n ≤ m, b ∈ Rm

{tall and skinny A with linearly independent columns}

Solve: minx ‖Ax − b‖2 {two norm}

Unique solution (in exact arithmetic): x∗ = A†b

Moore-Penrose inverse: A† ≡ (ATA)−1AT

Hat matrix: AA† = A(ATA)−1AT

orthogonal projector onto range(A)

Least squares residual: b − Ax∗ = (I − AA†)b
orthogonal projection of b onto range(A)⊥



Least Squares Solvers for Dense Matrices

Idea: Basis transformation A = QR

Q has orthonormal columns: QTQ = In
{Orthonormal basis for range(A)}

R is triangular nonsingular
{Easy-to-compute relation between old and new bases}

Left inverse simplifies: A† = (ATA)−1AT = R−1QT

Direct method:

1 Thin QR factorization A = QR

2 Triangular system solve R x∗ = QTb

Operation count: O(mn2) flops



Least Squares Solvers for Sparse Matrices

LSQR [Paige & Saunders 1982]

Krylov space method for solving system with
(

I A

AT 0

)

Matrix vector products with A and AT

Conceptually:
Solution of ATAx = ATb with approximations at iteration k

xk ∈ span
{

ATb, (ATA)ATb, . . . , (ATA)k ATb
}

Residuals decrease {in exact arithmetic}

‖b − Axk‖2 ≤ ‖b − Axk−1‖2
Fast convergence if condition number κ(A) ≡ ‖A‖2‖A†‖2 small

‖A(x∗ − xk)‖22 ≤ 2

(

κ(A)− 1

κ(A) + 1

)k

‖A(x∗ − x0)‖22



Summary: Deterministic Least Squares Solvers

Given: A ∈ Rm×n with rank(A) = n

Want: Unique solution x∗ of minx ‖Ax − b‖2
Dense matrix A

A = QR requires O(mn2) flops
Too expensive when A is large or sparse
QR produces fill-in

Sparse matrix A

Krylov space methods, like LSQR
Matrix vector products with A and AT

Convergence depends on κ(A)
Need convergence acceleration (preconditioner)

that is cheap and effective



Kaczmarz:
An Iterative Coordinate Descent Method



Idea Behind Kaczmarz Methods

Each iteration projects on a particular equation

A =






aT1
...
aTm




 ∈ R

m×n b =






b1
...
bm




 ∈ R

m

Given iterate x(k−1), compute next iterate x(k) = x(k−1) + z

so that x(k) solves equation i

z = eTi

(

b − Ax(k−1)
) ai

aTi ai
=

bi − aTi x
(k−1)

‖ai‖22
ai

Then aTi x
(k) = bi



Kaczmarz Methods for Linear Systems

Input: A ∈ Rm×n with rank(A) = n, b ∈ Rm, x(0) ∈ Rn

Output: Approximate solution to Ax∗ = b

for k = 1, 2, . . . do
Choose equation i

x(k) = x(k−1) +
bi−aTi x

(k−1)

‖ai‖22
ai

end for

How to choose equation i?

Deterministic [Kaczmarz 1937]

Cycle through the equations: i = k mod m + 1

Randomized: Uniform Sampling [Natterer 1986]

Sample i from {1, . . . ,m} with probability 1/m,
independently and with replacement



Randomized Kaczmarz with Non-Uniform Sampling

Let A ∈ Rm×n with rank(A) = n

Scaled condition number: κF ,2(A) = ‖A‖F ‖A†‖2
Sample rows with large norms

Sample i from {1, . . . ,m} with probability ‖ai‖22/‖A‖2F
independently and with replacement

Convergence in expectation

Linear systems Ax∗ = b [Strohmer, Vershynin 2009]

E

[

‖x (k) − x∗‖22
]

≤
(

1−
1

(κF ,2(A))2

)k

‖x (0) − x∗‖22

Least squares minx ‖Ax − b‖2 [Needell 2010]

E

[

‖x (k) − x∗‖22
]

≤
(

1−
1

(κF ,2(A))2

)k

‖x (0) − x∗‖22 + (κF ,2(A))
2‖b − Ax∗‖2∞



Connections, and Related Work:
A Very Small Selection

Sampling rows according to row norms: Diagonal scaling for
optimal condition numbers [Van der Sluis 1969]

Kaczmarz with relaxation factors for least squares
[Hanke, Niethammer 1990, 1995]

Greedy Kaczmarz-Motzkin algorithms [Haddock, Ma 2021]

Randomized Gauss-Seidel for least squares [Niu, Zheng, 2021]

Direct projection methods for linear systems [Benzi, Meyer 1995]

Kaczmarz for detection of corrupted matrix elements
[Haddock, Needell 2019]

Application to medical imaging, computer tomography
[Natterer 2001]



Effect of Sampling on
Statistical Model Uncertainty



Example: Effect of Sampling on Model Uncertainty

Gaussian linear model

b = Ax0 + ε A =







1 0
0 1
1 0
0 0







ε ∼ N (0,σ2I4)

Least squares problem minx ‖Ax − b‖2 has solution

x∗ = A†b A† = (ATA)−1AT =

(
1
2 0 1

2 0
0 1 0 0

)

Solution is unbiased estimator

Eε[x∗] = A†
Eε[b] = A†Ax0 = x0

with nonsingular variance Varε[x∗] = σ2(ATA)−1 = σ2

(
1
2 0
0 1

)



Example: Sampling Preserves Rank

Fixed sampling matrix S with rank(SA) = rank(A)
minx ‖S(Ax − b)‖2 has unique solution x̃ = (SA)†Sb

Sampled matrix has full column-rank

SA =

(

1 0 0 0
0 1 0 0

)







1 0
0 1
1 0
0 0







=

(

1 0
0 1

)

= (SA)†

Unbiased estimator Eε[x̃ ] = (SA)†S Eε [b] = x0

Increase in variance

Varε[x̃ ] = σ2

(

1 0
0 1

)

! σ2

(
1
2 0
0 1

)

= Varε[x∗]



Example: Sampling Fails to Preserve Rank

Fixed sampling matrix S with rank(SA) < rank(A)
minx ‖S(Ax − b)‖2 has minimal-norm solution x̃ = (SA)†Sb

Sampled matrix is rank-deficient

SA =

(

1 0 0 0
0 0 0 1

)







1 0
0 1
1 0
0 0







=

(

1 0
0 0

)

= (SA)†

Biased estimator Eε[x̃ ] = (SA)†(SA)x0 =

(

1 0
0 0

)

x0 '= x0

Singular variance

Varε[x̃ ] = σ2

(

1 0
0 0

)

'= σ2

(
1
2 0
0 1

)

= Varε[x∗]



Summary: Effect of Sampling on Model Uncertainty

minx ‖S(Ax − b)‖2 has minimal-norm solution x̃ = (SA)†(Sb)

with expectation Eε[x̃ ] = (SA)†(SA)x0

If S preserves rank: rank(SA) = rank(A)

(SA)† is left inverse: (SA)†(SA) = I

x̃ is unbiased estimator: Eε[x̃ ] = x0

If S loses rank: rank(SA) < rank(A)

No left inverse: (SA)†(SA) '= I

x̃ is biased estimator: Eε[x̃ ] '= x0

Variance Varε[x̃ ] is singular

This was a best case analysis: A fixed sampling matrix S .
We did not incorporate the uncertainty due to randomization



How to do Randomized Sampling



How to Sample [Devroye 1986]

Sample t from {1, . . . ,m} with probability pt

Uniform sampling: pi = 1/m, 1 ≤ i ≤ m

υ = rand {uniform [0, 1] random variable}

t = (1 +m υ)

Non-uniform sampling:

υ = rand, t = 1, F = p1
while υ > F

t = t + 1, F = F + pt

Inversion by sequential search: F (i) ≡
∑i

j=1 pj so that pi = F (i)− F (i − 1)

t defined by F (t − 1) < υ ≤ F (t)

Matlab: randi, datasample
R: sample



Different Sampling Methods

Want: Sampling matrix S with E[STS ] = Im

1 Uniform sampling with replacement
Sample kt from {1, . . . ,m} with probability 1

m , 1 ≤ t ≤ c

S =
√

m
c

(

ek1 . . . ekc
)T

2 Uniform sampling without replacement
Let k1, . . . , km be a permutation of 1, . . . ,m

S =
√

m
c

(

ek1 . . . ekc
)T

3 Bernoulli sampling

S(t, :) =
√

m
c

{

eTt with probability c
m

01×m with probability 1− c
m

1 ≤ t ≤ m

Alternative simulation:
Sample c̃ from {1, . . . ,m} with P[c̃ = k] =

(m
k

)

( c
m
)k (1− c

m
)m−k

Sample k1, . . . , kc̃ without replacement



Comparison of Different Sampling Methods

Sampling rows from matrices with orthonormal columns
104 × 5 matrices Q with QTQ = I

Plots for 5 ≤ c ≤ 104

1 Percentage of numerically rank-deficient SQ {κ(SQ) ≥ 1016}

2 Condition number of full column-rank SQ

κ(SQ) = ‖SQ‖2 ‖(SQ)†‖2



Comparison of Sampling Methods
Sampling with replacement

Sampling without replacement

Bernoulli sampling



Summary:
Comparison of Different Sampling Methods

Three different sampling methods:

Uniform sampling with replacement
Uniform sampling without replacement
Bernoulli sampling

Conclusion:
Little difference among sampling methods
for small amounts of sampling

From now on:
Use sampling with replacement



An Overview of
Randomized Least Squares/Regression



Randomized Least Squares/Regression

minx∈Rn ‖Ax − b‖2 for A ∈ Rm×n with m ≥ n

Direct methods require O(mn2) flops

Classification [Thanei, Heinze, Meinshausen 2017]

Row-wise compression: minx∈Rn ‖S(Ax − b)‖2
S ∈ Rc×m with c ≤ m

Solver requires O(cn2) flops after compression

Column-wise compression: miny∈Rc ‖ASy − b‖2
S ∈ Rn×c with c ≤ n

Solver requires O(mc2) flops after compression

Special case: S ∈ Rn×n nonsingular
Right preconditioning to accelerate iterative methods



Existing Work
Row-wise compression

Bartels, Hennig (2016); Becker, Jawas, Patrick, Ramamurthy (2017)
Boutsidis, Drineas (2009); Dhillon, Lu, Foster, Ungar (2013)
Drineas, Mahoney, Muthukrishnan (2006)
Drineas, Mahoney, Muthukrishnan, Sarlós (2011)
Ipsen, Wentworth (2014)
McWilliams, Krummenacher, Luc̆ić, Buhmann (2014)
Meng, Saunders, Mahoney (2014); Wang, Zhu, Ma (2018)
Zhou, Lafferty, Wasserman (2007)

Column-wise compression

Kabán (2014); Mallard, Munos (2009)
Meng, Saunders, Mahoney (2014)
Thanei, Heinze, Meinshausen (2017)

Right preconditioning

Avron, Maymounkov, Toledo (2010)
Ipsen, Wentworth (2014); Rokhlin, Tygert (2008)

Statistical properties

Ahfock, Astle, Richardson (2017); Chi, Ipsen (2020)
Lopes, Wang, Mahoney (2018); Ma, Mahoney, Yu (2014, 2015)
Raskutti, Mahoney (2016; Thanei, Heinze, Meinshausen (2017)



Randomized Row-Wise Compression
for Dense Matrices



Uniform Sampling with Replacement
[Drineas, Kannan & Mahoney 2006]

S ∈ Rc×m samples c rows from identity Im =






eT1
...
eTm






for t = 1 : c do
Sample kt from {1, . . . ,m} with probability 1/m
independently and with replacement

end for

Sampling matrix S =
√

m
c






eTk1
...
eTkc






Expected value E
[

STS
]

= Im

S can sample a row more than once



Example: Uniform Sampling with Replacement

Sample 2 out of 4 rows: m = 4, c = 2,
√

m
c =

√
2

A =









1 0
0 1
1 0
0 0









, S(ij) =
√
2

(

eTi
eTj

)

, 1 ≤ i , j ≤ 4

Examples of sampled matrices

S(11)A =
√
2

(

1 0 0 0
1 0 0 0

)









1 0
0 1
1 0
0 0









=
√
2

(

1 1
1 1

)

S(42)A =
√
2

(

0 0 0 1
0 1 0 0

)









1 0
0 1
1 0
0 0









=
√
2

(

0 0
0 1

)

Sampling matrices are unbiased estimators of identity

E[STS] =
4

∑

i=1

4
∑

j=1

1
16

(

S(ij)
)T

S(ij) = I4



Row Sampling Algorithm for minx∈Rn ‖Ax − b‖2
Special case of [Drineas, Mahoney, Muthukrishnan, Sarlós, 2011]

Input: A ∈ Rm×n with rank(A) = n, b ∈ Rm

c ≥ 1 {sampling amount}

S = 0c×m {initialize sampling matrix}
for t = 1 : c do

Sample kt from {1, . . . ,m} with probability 1/m
independently and with replacement
S(t, :) =

√
m
c e

T
kt

{row t of sampling matrix}
end for

Output: Minimal norm solution x̃ of minx ‖S(Ax − b)‖2



Error due to Randomization

Derivation in two steps

1 Structural bound:
Treat sampling matrix SA as fixed perturbation
Carry deterministic analysis as far as possible

2 Probabilistic bound:
Treat sampled matrix SA as random matrix
Use matrix concentration inequalities



Structural Bound: Absolute Error

Exact solution x∗ = A†b

Randomized solution x̃ = (SA)†Sb
Assume: rank(SA) = rank(A)

Change of basis: A = QR

Geometric interpretation of error

x̃ − x∗ = (SA)†Sb − A†b = A†Q(SQ)†S (b − Ax∗)

Q(SQ)†S is oblique projector onto range(A)
b − Ax∗ is exact least squares residual

If ‖S(b − Ax∗)‖2 ≤ (1 + ε)‖b − Ax∗‖2 then

‖x̃ − x∗‖2 ≤ (1 + ε)‖A†‖2‖(SQ)†‖2‖b − Ax∗‖2



Structural Bound: Relative Error
[Drineas, Mahoney, Muthukrishnan, Sarlós, 2011]

If rank(SA) = n and ‖S(b − Ax∗)‖2 ≤ (1 + ε)‖b − Ax∗‖2 then

‖x̃ − x∗‖2
‖x∗‖2

≤ (1 + ε) ‖(SQ)†‖2 κ(A)
‖b − Ax∗‖2
‖A‖2‖x∗‖2
︸ ︷︷ ︸

normalized
LS residual

κ(A) = ‖A‖2‖A†‖2 condition of A w.r.t. left inversion

Relative error depends only on κ(A) but not [κ(A)]2

Sensitivity to multiplicative perturbations from randomization
is lower than sensitivity to deterministic additive perturbations

Probabilistic bound for ‖(SQ)†‖2
Has to take care of rank(SA) = n, and quantify ε



Towards a Probabilistic Bound

Given A ∈ Rm×n with rank(A) = n

‖x̃ − x∗‖2
‖x∗‖2

≤ (1 + ε) ‖(SQ)†‖2 κ(A)
‖b − Ax∗‖2
‖A‖2‖x∗‖2

For the analysis (but not computed): A = QR

where Q ∈ Rm×n with QTQ = I

Idea: SA = (SQ)R
Sampling rows from A amounts to sampling rows from Q

Simplify the analysis to SQ:
Sampling rows from matrices Q with orthonormal columns

Before doing the analysis:
Look at a randomized solver for sparse matrices, which faces the
same situation



A Randomized Right Preconditioner
for Sparse Matrices



Right Preconditioning LSQR

Convergence acceleration for LSQR applied to minx ‖Ax − b‖2

Right preconditioning = change of variables

min
y

‖AP−1 (Px)
︸︷︷︸

y

−b‖2

1 miny ‖AP−1y − b‖2 {Solve preconditioned problem with LSQR}

2 Solve Px∗ = y {Retrieve solution to original problem}

Requirements for preconditioner P

Fast convergence: κ(AP−1) ≈ 1
Linear systems with P are cheap to solve



The Ideal Right Preconditioner

QR factorization A = QR QTQ = In, R is ,

Use R as preconditioner

Preconditioned matrix AR−1 = Q

Orthonormal columns
Perfect condition number κ(Q) = 1

LSQR solves pre-conditioned system in 1 iteration

But:

This is what we are trying to avoid in the first place
Construction of preconditioner is way too expensive



A Randomized Preconditioner

Idea: QR factorization from a few rows of m × n matrix A

1 Sample c ≥ n rows of A: SA

2 QR factorization of sampled matrix

SA = Qs Rs QT
s Qs = In, Rs is .

3 Randomized preconditioner R−1
s

Operation count: O(cn2) {independent of large dimension m}



QR Factorization from a Few Rows
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Blendenpik [Avron, Maymounkov & Toledo 2010]

Input: m × n matrix with rank(A) = n, m × 1 vector b
Sampling amount c ≥ n

Output: Solution x∗ to minx ‖Ax − b‖2

{Construct preconditioner}
Sample c rows of A → SA {fewer rows}

QR factorization SA = QsRs

{Solve preconditioned problem}

Solve miny ‖AR−1
s y − b‖2 with LSQR

Solve Rs x∗ = y {, system}

We hope:

AR−1
s has almost orthonormal columns

Condition number almost perfect: κ(AR−1
s ) ≈ 1



From Sampling to Condition Numbers
[Avron, Maymounkov & Toledo 2010]

Two QR factorizations

Computed factorization of sampled matrix: SA = QsRs

Conceptual factorization of full matrix: A = QR

Idea
1 Sampling rows of A " Sampling rows of Q

rank(SA) = rank(SQ)

2 Condition number of preconditioned matrix (2-norm)

κ(AR−1
s ) = κ(SQ)

Simpler problem

Sample from matrices with orthonormal columns



Sampling from Matrices with Orthonormal Columns
What To Expect

Given: Q ∈ R8×2 with QTQ = I

Want: Sampled matrix SQ with rank(SQ) = 2
Which one is easier?

Q =























1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0























versus Q = 1√
8























1 1
1 1
1 1
1 1
1 −1
1 −1
1 −1
1 −1

























Sampling from Matrices with Orthonormal Columns
What To Expect

Given: Q ∈ R8×2 with QTQ = I

Want: Sampled matrix SQ with rank(SQ) = 2
Which one is easier?

Q =























1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0























versus Q = 1√
8























1 1
1 1
1 1
1 1
1 −1
1 −1
1 −1
1 −1























Row norms (squared)

‖eT1 Q‖22 = ‖eT2 Q‖22 = 1
‖eTj Q‖22 = 0 for j ≥ 3

‖eTj Q‖22 = 2
8 = 1

4 for all j



Sampling from Matrices with Orthonormal Columns

Q ∈ R8×2 with QTQ = I

Q =















1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0















Q = 1√
8















1 1
1 1
1 1
1 1
1 −1
1 −1
1 −1
1 −1















maxj ‖eTj Q‖22 = 1 max
j

‖eTj Q‖22 = 1
4

Sampling is hard Sampling is easy

Largest row norm distinguishes matrices with orthonormal columns
Use it to quantify difficulty of sampling



Probabilistic Bound for
Deviation from Orthonormality



Deviation of SQ from Orthonormality

Given 0 ≤ ε < 1, want sampling amount c ≥ n so that

‖(SQ)T (SQ)− I‖2 ≤ ε

This implies for the singular values of SQ ∈ Rc×n

1− ε ≤ σj(SQ)2 ≤ 1 + ε, 1 ≤ j ≤ n

Therefore

SQ has full column-rank: minj σj(SQ) ≥
√
1− ε > 0

Left inverse exists and is bounded

‖(SQ)†‖2 =
1

minj σj(SQ)
≤ 1√

1− ε

Condition number is bounded

κ2(SQ) = ‖SQ‖2‖(SQ)†‖2 =
maxj σj(SQ)

minj σj(SQ)
≤

√

1 + ε

1− ε



Matrix Bernstein Concentration Inequality [Recht 2011]

Assume

Zero-mean: Independent random n × n matrices Yt

with E [Yt ] = 0n×n

Boundedness: ‖Yt‖2 ≤ τ almost surely

Variance: ρt ≡ max{‖E[YtY
T
t ]‖2, ‖E[Y T

t Yt ]‖2}

Desired error tolerance: 0 < ε < 1

Failure probability: δ = 2n exp
(

−3
2

ε2

3
∑

t ρt + τ ε

)

Then with probability at least 1− δ
∥
∥
∥
∥
∥

∑

t

Yt

∥
∥
∥
∥
∥
2

≤ ε {Deviation from mean}



Apply the Concentration Inequality

Sampled matrix

QTSTSQ = X1 + · · · + Xc , Xt =
m
c Q

T ekte
T
ktQ

Zero-mean version

QTSTSQ − In = Y1 + · · ·+ Yc , Yt = Xt − 1
c In

Check assumptions

Zero mean: E[Yt ] = 0 {by construction}

Boundedness: ‖Yt‖2 ≤ m
c µ

Variance: ‖E[Y 2
t ]‖2 ≤ m

c2
µ

Largest row norm squared: µ = max1≤j≤m ‖eTj Q‖22

Deviation of SQ from orthonormality:
With probability at least 1− δ, ‖(SQ)T (SQ)− In‖2 ≤ ε



Condition Number Bound [Ipsen & Wentworth 2014]

Assume

m × n matrix Q with QTQ = In {orthonormal columns}

Largest row norm squared: µ = max1≤j≤m ‖eTj Q‖22
Number of sampled rows: c ≥ n

Desired error tolerance: 0 < ε < 1

Failure probability

δ = 2n exp

(

− c

m µ

ε2

3 + ε

)

Then with probability at least 1− δ

Condition number of sampled matrix κ(SQ) ≤
√

1+ε
1−ε



Tightness of Condition Number Bound

Input: m × n matrix Q with QTQ = In {orthonormal columns}

m = 104, n = 5, µ = 1.5 n/m

Investigate: c × n matrix SQ {sampling with replacement}

Little sampling: n ≤ c ≤ 1000
A lot of sampling: 1000 ≤ c ≤ m

Plots:

1 Exact condition number κ(SQ)

2 Bound κ(SQ) ≤
√

1+ε
1−ε

with probability 1− δ ≡ .99

ε ≡ 1
2c

(

(+
√

12c(+ (2
)

( ≡ 2
3 (m µ− 1) ln(2n/ δ) = Ω (m µ ln n)



Little sampling (n ≤ c ≤ 1000)

0 100 200 300 400 500 600 700 800 900 1000
1

10

c

κ(
SQ

)

Exact condition numbers κ(SQ)

Bound holds starting from c ≥ 93 ≈ 3( = Ω (m µ ln n)



A lot of sampling (1000 ≤ c ≤ m)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1

1.2

1.3

1.4

1.5

1.1

c

κ(
SQ

)

Bound predicts correct magnitude of condition numbers



Conclusions for Condition Number Bound

Given: m × n matrix Q with QTQ = In {orthonormal columns}

Sampling: c × n matrix SQ

Bound on condition number κ(SQ) of sampled matrix:

Correct magnitude

Informative even for small matrix dimensions
and stringent success probabilities

Implies lower bound on number of sampled rows

c = Ω (m µ ln n)

Depends on coherence of Q: µ = max1≤j≤m ‖eTj Q‖22
Largest squared row norm of Q
Reveals distribution of mass in Q



Coherence



Properties of Coherence

Coherence of m× n matrix Q with QTQ = In {orthonormal columns}

µ = max
1≤j≤m

‖eTj Q‖22

n/m ≤ µ(Q) ≤ 1

Maximal coherence: µ(Q) = 1
At least one column of Q is column of identity

Minimal coherence: µ(Q) = n/m
Columns of Q are columns of Hadamard matrix

Coherence

Measures correlation with standard basis

Reflects difficulty of recovering the matrix from sampling

Definition can be extended to: general matrices, subspaces



The Origins of Coherence

Donoho & Huo 2001
Mutual coherence of two bases

Candés, Romberg & Tao 2006

Candés & Recht 2009
Matrix completion: Recovering a low-rank matrix
by sampling its entries

Mori & Talwalkar 2010, 2011

Estimation of coherence

Avron, Maymounkov & Toledo 2010

Randomized preconditioners for least squares

Drineas, Magdon-Ismail, Mahoney & Woodruff 2011

Fast approximation of coherence



Effect of Coherence on Sampling

Input: m × n matrix Q with QTQ = In {orthonormal columns}

m = 104, n = 5
Investigate: c × n matrix SQ {sampling with replacement}

Question: How does coherence of Q affect sampling?

Two types of matrices Q
1 Low coherence: µ = 7.5 · 10−4 = 1.5 n/m

2 Higher coherence: µ = 7.5 · 10−2 = 150 n/m

Plots for n ≤ c ≤ 1000
1 Percentage of numerically rank-deficient SQ {κ(SQ) ≥ 1016}

2 Condition number of full column-rank SQ

κ(SQ) = ‖SQ‖2 ‖(SQ)†‖2



Sampling Rows from Q with Low Coherence
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Only a single matrix SQ is rank-deficient (for c = 5)

Full-rank matrices SQ perfectly conditioned: κ(SQ) < 4



Sampling Rows from Q with Higher Coherence
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Sampling up to 10% of rows:

Most matrices SQ are rank-deficient
Full-rank matrices SQ perfectly conditioned: κ(SQ) ≤ 5



Effect of Coherence on Sampling: Conclusions

Given: m × n matrix Q with QTQ = In {orthonormal columns}

Investigate: c × n sampled matrix SQ

Q has low coherence µ ≈ n/m

Mass of Q uniformly distributed {it does not matter what you pick}

Most SQ full-rank and perfectly conditioned {even for small c}

Sampling is easy

Q has higher coherence µ ≈ 100n/m

Mass of Q concentrated in a few spots {you have to be lucky}

Most SQ rank-deficient {even for larger c}

Sampling is hard



A Few Take Aways for
Randomized Least Squares Solvers

min
x

‖Ax − b‖2

Sampling is effective if A has good coherence (‘uniformity’)

Powerful matrix concentration inequalities are important

The ’safe’ randomized LS solver: Blendenpik
Randomization confined to preconditioner

Not discussed: Improving coherence with fast multiplication
by random matrix

Research questions

Numerical behavior in floating point arithmetic

Effect of sampling on statistical model uncertainty

Flexible preconditioners that can change in every iteration

Regularization for ill-posed problems
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