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Introduction

The problem: for x1, . . . , xn ∈ R, compute

sn :=
n∑

i=1

xi

Compute the sum using recursive summation:

ŝ1 := x1,

ŝi := fl(ŝi−1 + xi ), i = 2 : n.

The goal: bound the error |ŝn − sn|.
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Introduction

Classical model for floating-point arithmetic:

Model (Classical)

For any floating point numbers a and b,

fl(a� b) = (a� b)(1 + δ), |δ| ≤ u, � ∈ {+,−,×, /,√},

where u is the unit roundoff.
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Deterministic Bound

Computing the partial sums:

ŝ1 = x1,

ŝ2 = (ŝ1 + x2)(1 + δ2)

= x1(1 + δ2) + x2(1 + δ2),

ŝ3 = (ŝ2 + x3)(1 + δ3)

= x1(1 + δ2)(1 + δ3) + x2(1 + δ2)(1 + δ3) + x3(1 + δ3),

...

ŝn =
n∑

i=1

xi

 n∏
j=max{2,i}

(1 + δj)


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Deterministic Bound

Lemma (Deterministic Error Bound)

If |δi | ≤ u for i = 1 : n, and nu < 1, then

n∏
i=1

(1 + δi ) = 1 + θn,

where
|θn| ≤

nu

1− nu
=: γn.

Consequently,

|ŝn − sn| ≤ γn
n∑

i=1

|xi |.

γn ≈ nu as long as nu � 1.
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Deterministic Bound

Higham (2002):

Whenever we write γn there is an implicit assumption that nu < 1,
which is true in virtually any circumstance that might arise with IEEE
single or double precision arithmetic.
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Low-Precision Arithmetic

Normalized non-zero floating point numbers:

x = (−1)s(1.f )2 · 2e

Precision Sign Exp Float u

Double (f64) 1 11 52 1.11 · 10−16

Single (f32) 1 8 23 5.96 · 10−8

Half (f16) 1 5 10 4.88 · 10−4

Quarter (??) 1 3 4 3.13 · 10−2

Problem sizes getting larger

Half precision increasingly common

When nu > 1, bounds using γn become useless
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Probabilistic Model

Solution: abandon worst-case bounds, try probabilistic analysis instead

Model (Probabilistic)

For any floating point numbers a and b,

fl(a� b) = (a� b)(1 + δ), |δ| ≤ u, � ∈ {+,−,×, /,√},

where u is the unit roundoff. The quantities δ for each computation are
independent random variables with mean zero.

This model is wrong. But is it useful?
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Probabilistic Model

Central Limit Theorem: if e =
∑n

i=1 δi ti and |δi | ≤ u, then

|e| ≤ λu

(
n∑

i=1

t2i

)1/2

with high probability for large n.

λ modest in size, controls probability

Deterministic bound u
∑n

i=1 |ti | can be factor of
√
n larger
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Probabilistic Model

Wilkinson (1961):

In general, the statistical distribution of the rounding errors will reduce
considerably the function of n occurring in the relative errors. We might
expect in each case that this function should be replaced by something
which is no bigger than its square root and is usually appreciably
smaller.

Ultimate goal: replace nu in error bounds with something that grows like
√
nu
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Probabilistic Bound

Theorem (Hoeffding’s Inequality)

Let X1, . . . ,Xn be independent random variables satisfying

|Xi | ≤ ci , i = 1 : n.

The sum S =
∑n

i=1 Xi satisfies

Pr(|S − E[S ]| ≥ ξ) ≤ 2 exp

(
− ξ2

2
∑n

i=1 c
2
i

)
.

Assumptions: random variables are independent and bounded.

Holds for all n, not just as n→∞
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Probabilistic Bound

Lemma (Higham/Mary 2018)

Assume the probabilistic model for roundoff errors. If |δi | ≤ u for i = 1 : n, and
nu < 1, then

n∏
i=1

(1 + δi ) = 1 + θ̃n,

where

|θ̃n| ≤ γ̃n(λ) := exp

(
λ
√
nu +

nu2

1− u

)
− 1 ≈ λ

√
nu

with failure probability at most

Q(λ) = 2 exp

(
−λ

2(1− u)2

2

)
.
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Probabilistic Bound

Deterministic bound:

|ŝn − sn| ≤ γn
n∑

i=1

|xi | ≈ nu
n∑

i=1

|xi |.

Probabilistic bound: WFP at most Q(λ),

|ŝn − sn| ≤ γ̃n(λ)
n∑

i=1

|xi | ≈ λ
√
nu

n∑
i=1

|xi |.

Probabilistic approximation holds while λ
√
nu � 1
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Probabilistic Bound

How does the Higham/Mary bound perform in practice?

Much stronger than deterministic bound

Slightly pessimistic on random [0, 1] data

Way off the mark on random [−1, 1] data
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Running Error Bound

Idea (Higham 2002): rewrite the computed sums as

ŝi =
ŝi−1 + xi

1 + δi
, |δi | ≤ u.

Result: the deterministic running error bound

|ŝn − sn| =

∣∣∣∣∣
n∑

i=1

δi ŝi

∣∣∣∣∣ ≤ u
n∑

i=1

|ŝi |

This can be much smaller than the a priori bounds!
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Running Error Bound

Higham 2002:

In designing or choosing a summation method to achieve high accuracy,
the aim should be to minimize the absolute values of the intermediate
sums [ŝi ].

Our goal: find the probabilistic version of the running error bound

Problem: Quantities ŝi depend on δ terms

Difficult to apply concentration bounds directly to
∑n

i=1 δi ŝi
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Intermediate Sums

Our strategy: rewrite error as

ŝn − sn =
n∑

i=2

siδi

n∏
j=i+1

(1 + δj)

 .

Deterministic bound:

|ŝn − sn| ≤ u(1 + γn)
n∑

i=2

|si |.

Two small wrinkles in getting the probabilistic version:

δi independent ; δi
∏n

j=i+1(1 + δj) independent

The term (1 + γn) is a problem when nu > 1
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Martingales

Use a martingale!

Definition (Martingale)

A squence of random variables X1,X2, . . . is a martingale with respect to δ1, δ2, . . .
if for i ≥ 1

1 Xi is a function of δ1, . . . , δi−1,

2 E[|Xi |] <∞
3 E[Xi+1|δ1, . . . , δi−1] = Xi .

Examples: unbiased random walk, gambler playing a fair game

The increments (Xi+1 − Xi ) do not need to be independent!
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Martingales

We can relax the requirements of Hoeffding’s Inequality.

Theorem (Azuma’s Inequality)

Suppose a martingale {X1, . . . ,Xn} satisfies

|Xi − Xi−1| ≤ ci , i = 2 : n.

Then

Pr(|Xn − X1| ≥ ξ) ≤ 2 exp

(
− ξ2

2
∑n

i=2 c
2
i

)
.
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Martingales

To construct the martingale, work backwards:

X1 = sn,

X2 = X1 + snδn,

X3 = X2 + sn−1δn−1(1 + δn),

...

Xn = Xn−1 + s2δ2

n∏
j=3

(1 + δj)

Apply Azuma’s inequality with

ci = |sn−i+2|u(1 + γn),

ξ = λu(1 + γn)

(
n∑

i=2

s2i

)1/2
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Martingales

Deterministic bound:

|ŝn − sn| ≤ u(1 + γn)
n∑

i=2

|si |

Probabilistic bound:

|ŝn − sn| ≤ λu(1 + γn)

(
n∑

i=2

s2i

)1/2

with failure probability at most 2 exp
(
−λ

2

2

)
Not good enough: (1 + γn) blows up when nu > 1!
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Probabilistic Azuma

Second idea: why use the bound∣∣∣∣∣∣δi
n∏

j=i+1

(1 + δj)

∣∣∣∣∣∣ ≤ u(1 + γn),

when the left-hand side is probably much smaller?
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Probabilistic Azuma

Relax Azuma’s inequality by allowing the bounds to fail with small probability.

Theorem (Azuma’s Inequality, Probabilistic Version)

Suppose a martingale {X1, . . . ,Xn} satisfies

|Xi − Xi−1| ≤ ci , i = 2 : n

with total failure probability at most η. Then

Pr(|Xn − X1| ≥ ξ) ≤ 2 exp

(
− ξ2

2
∑n

i=2 c
2
i

)
+ η.

Using η = Q(λ), we can replace γn with γ̃n(λ) in our bounds at minimal cost!
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New Bound

Deterministic bound:

|ŝn − sn| ≤ u(1 + γn)
n∑

i=2

|si |

Probabilistic bound:

|ŝn − sn| ≤ λu(1 + γ̃n(λ))

(
n∑

i=2

s2i

)1/2

with failure probability at most 2Q(λ).

Now works well when nu > 1 and λ
√
nu � 1
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Numerical Experiments

Half precison, uniform [-1,1] data

γ̃n: the Higham/Mary probabilistic bound

µ: the deterministic running bound

ν: our new probabilistic bound

ε: the true error
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Numerical Experiments

Quarter precison, uniform [-1,1] data

Single/Half precision: we typically overestimate the error by a factor of 10

Quarter precison: similar performance to the deterministic running bound
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Numerical Experiments

Half precison, uniform [-1,1] data

Our estimates break down when λ
√
nu > 1

Still fails to capture behavior in practice for large n
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Conclusions

Summary of bounds:

Deterministic Probabilistic

Data γn
∑n

i=1 |xi | γ̃n
∑n

i=1 |xi |

Intermediate Sums u(1 + γn)
∑n

i=2 |si | λu(1 + γ̃n(λ))
(∑n

i=2 s
2
i

)1/2
Running Bound u

∑n
i=1 |ŝi | ???

(How) can we drop the (1 + γ̃n(λ)) term?

(How) can we develop an effective running bound?
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Conclusions

Thanks for listening!
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