Probabilistic Rounding Error Analysis for Sums

Eric Hallman

North Carolina State University

Spring 2020

Introduction

The problem: for $x_1, \ldots, x_n \in \mathbb{R}$, compute

$$s_n := \sum_{i=1}^n x_i$$

Compute the sum using recursive summation:

$$\hat{s}_1 := x_1,$$

 $\hat{s}_i := fl(\hat{s}_{i-1} + x_i), \quad i = 2:n.$

The goal: bound the error $|\hat{s}_n - s_n|$.

< □ > < □ > < Ξ > < Ξ > < Ξ = のへで

Classical model for floating-point arithmetic:

Model (Classical)

For any floating point numbers a and b,

$$\mathsf{fl}(a \odot b) = (a \odot b)(1 + \delta), \quad |\delta| \leq u, \quad \odot \in \{+, -, \times, /, \sqrt{\}},$$

where u is the unit roundoff.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

Background

Deterministic Error Bounds

• Probabilistic Error Analysis

2 Intermediate Sums

3 New Bounds

4 Experiments/Conclusions

Computing the partial sums:

$$\begin{split} \hat{s}_1 &= x_1, \\ \hat{s}_2 &= (\hat{s}_1 + x_2)(1 + \delta_2) \\ &= x_1(1 + \delta_2) + x_2(1 + \delta_2), \\ \hat{s}_3 &= (\hat{s}_2 + x_3)(1 + \delta_3) \\ &= x_1(1 + \delta_2)(1 + \delta_3) + x_2(1 + \delta_2)(1 + \delta_3) + x_3(1 + \delta_3), \\ &\vdots \\ \hat{s}_n &= \sum_{i=1}^n x_i \left(\prod_{j=\max\{2,i\}}^n (1 + \delta_j) \right) \end{split}$$

Eric Hallman (North Carolina State University)

Spring 2020 5 / 32

Lemma (Deterministic Error Bound)

If $|\delta_i| \leq u$ for i = 1 : n, and nu < 1, then

$$\prod_{i=1}^n (1+\delta_i) = 1+\theta_n,$$

where

$$|\theta_n| \leq \frac{nu}{1-nu} =: \gamma_n.$$

Consequently,

$$|\hat{s}_n - s_n| \leq \gamma_n \sum_{i=1}^n |x_i|.$$

• $\gamma_n \approx nu$ as long as $nu \ll 1$.

Spring 2020 6 / 32

Higham (2002):

Whenever we write γ_n there is an implicit assumption that nu < 1, which is true in virtually any circumstance that might arise with IEEE single or double precision arithmetic.

Low-Precision Arithmetic

Normalized non-zero floating point numbers:

```
x = (-1)^s (1.f)_2 \cdot 2^e
```

Precision	Sign	Exp	Float	U
Double (f64)	1	11	52	$1.11\cdot 10^{-16}$
Single (f32)	1	8	23	$5.96\cdot 10^{-8}$
Half (f16)	1	5	10	$4.88\cdot10^{-4}$
Quarter (??)	1	3	4	$3.13 \cdot 10^{-2}$

- Problem sizes getting larger
- Half precision increasingly common
- When nu > 1, bounds using γ_n become useless

Outline

Background

- Deterministic Error Bounds
- Probabilistic Error Analysis

2 Intermediate Sums

3 New Bounds

4 Experiments/Conclusions

< □ > < □ > < 亘 > < 亘 > < 亘 > < 亘 = のへ ?

Solution: abandon worst-case bounds, try probabilistic analysis instead

Model (Probabilistic)

For any floating point numbers a and b,

$$\mathsf{fl}(a \odot b) = (a \odot b)(1 + \delta), \quad |\delta| \le u, \quad \odot \in \{+, -, \times, /, \sqrt{\}},$$

where u is the unit roundoff. The quantities δ for each computation are independent random variables with mean zero.

This model is wrong. But is it *useful*?

< □ ▶

◆□ ◆ E ◆ ★ E ◆ E = のQQ

Central Limit Theorem: if $e = \sum_{i=1}^{n} \delta_i t_i$ and $|\delta_i| \leq u$, then

$$|e| \le \lambda u \left(\sum_{i=1}^n t_i^2\right)^{1/2}$$

with high probability for large n.

- λ modest in size, controls probability
- Deterministic bound $u \sum_{i=1}^{n} |t_i|$ can be factor of \sqrt{n} larger

Wilkinson (1961):

In general, the statistical distribution of the rounding errors will reduce considerably the function of n occurring in the relative errors. We might expect in each case that this function should be replaced by something which is **no bigger than its square root** and is usually appreciably smaller.

Ultimate goal: replace nu in error bounds with something that grows like \sqrt{nu}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□■ 釣�?

Theorem (Hoeffding's Inequality)

Let X_1, \ldots, X_n be independent random variables satisfying

$$|X_i| \leq c_i, \quad i=1:n.$$

The sum $S = \sum_{i=1}^{n} X_i$ satisfies

$$Pr(|S - \mathbb{E}[S]| \ge \xi) \le 2 \exp\left(-rac{\xi^2}{2\sum_{i=1}^n c_i^2}
ight).$$

• Assumptions: random variables are independent and **bounded**.

• Holds for all *n*, not just as $n \to \infty$

Probabilistic Bound

Lemma (Higham/Mary 2018)

Assume the probabilistic model for roundoff errors. If $|\delta_i| \leq u$ for i = 1: n, and nu < 1, then

$$\prod_{i=1}^{n} (1+\delta_i) = 1 + \tilde{\theta}_n,$$

where

$$|\tilde{\theta}_n| \leq \tilde{\gamma}_n(\lambda) := \exp\left(\lambda\sqrt{n}u + \frac{nu^2}{1-u}\right) - 1 \approx \lambda\sqrt{n}u$$

with failure probability at most

$$Q(\lambda) = 2 \exp\left(-\frac{\lambda^2(1-u)^2}{2}\right)$$

Spring 2020 14 / 32

Deterministic bound:

$$|\hat{s}_n - s_n| \leq \gamma_n \sum_{i=1}^n |x_i| \approx nu \sum_{i=1}^n |x_i|.$$

Probabilistic bound: WFP at most $Q(\lambda)$,

$$|\hat{s}_n - s_n| \leq \tilde{\gamma}_n(\lambda) \sum_{i=1}^n |x_i| \approx \lambda \sqrt{n} u \sum_{i=1}^n |x_i|.$$

• Probabilistic approximation holds while $\lambda \sqrt{n} u \ll 1$

Spring 2020 15 / 32

▲□▶ ▲□▶ ▲□▶ ▲□▶ ④□ のへで

Probabilistic Bound

How does the Higham/Mary bound perform in practice?

Fig. 4.1: Backward error and its bounds for the computation in single precision of the inner product $y = a^T b$, for vectors a and b with random uniform entries. Here, $N_{test} = 100$ and $\lambda = 1$.

- Much stronger than deterministic bound
- Slightly pessimistic on random [0,1] data
- ${\scriptstyle \bullet}$ Way off the mark on random [-1,1] data

SQ (V

▲□▶ ▲ 글▶ ▲ 글▶ 글 글

< □ ▶

Idea (Higham 2002): rewrite the computed sums as

$$\hat{s}_i = \frac{\hat{s}_{i-1} + x_i}{1 + \delta_i}, \quad |\delta_i| \le u.$$

Result: the deterministic *running error bound*

$$|\hat{s}_n - s_n| = \left|\sum_{i=1}^n \delta_i \hat{s}_i\right| \le u \sum_{i=1}^n |\hat{s}_i|$$

This can be much smaller than the *a priori* bounds!

Higham 2002:

In designing or choosing a summation method to achieve high accuracy, the aim should be to minimize the absolute values of the intermediate sums $[\hat{s}_i]$.

- Our goal: find the probabilistic version of the running error bound
- Problem: Quantities \hat{s}_i depend on δ terms
 - Difficult to apply concentration bounds directly to $\sum_{i=1}^{n} \delta_i \hat{s}_i$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□■ 釣�?

Our strategy: rewrite error as

$$\hat{s}_n - s_n = \sum_{i=2}^n \left(s_i \delta_i \prod_{j=i+1}^n (1+\delta_j) \right).$$

Deterministic bound:

$$|\hat{s}_n - s_n| \leq u(1 + \gamma_n) \sum_{i=2}^n |s_i|.$$

Two small wrinkles in getting the probabilistic version:

- δ_i independent $\Rightarrow \delta_i \prod_{i=i+1}^n (1 + \delta_i)$ independent
- The term $(1 + \gamma_n)$ is a problem when nu > 1

Use a martingale!

Definition (Martingale)

A squence of random variables X_1, X_2, \ldots is a martingale with respect to $\delta_1, \delta_2, \ldots$ if for $i \ge 1$

- X_i is a function of $\delta_1, \ldots, \delta_{i-1}$,

- Examples: unbiased random walk, gambler playing a fair game
- The increments $(X_{i+1} X_i)$ do **not** need to be independent!

We can relax the requirements of Hoeffding's Inequality.

Theorem (Azuma's Inequality)

Suppose a martingale $\{X_1, \ldots, X_n\}$ satisfies

$$|X_i - X_{i-1}| \le c_i, \quad i = 2:n.$$

Then

$$Pr(|X_n - X_1| \ge \xi) \le 2 \exp\left(-\frac{\xi^2}{2\sum_{i=2}^n c_i^2}\right)$$

Spring 2020 21 / 32

Martingales

To construct the martingale, work backwards:

$$X_{1} = s_{n},$$

$$X_{2} = X_{1} + s_{n}\delta_{n},$$

$$X_{3} = X_{2} + s_{n-1}\delta_{n-1}(1 + \delta_{n}),$$

$$\vdots$$

$$X_{n} = X_{n-1} + s_{2}\delta_{2}\prod_{j=3}^{n}(1 + \delta_{j})$$

Apply Azuma's inequality with

$$c_i = |s_{n-i+2}|u(1+\gamma_n),$$

$$\xi = \lambda u(1+\gamma_n) \left(\sum_{i=2}^n s_i^2\right)^{1/2}$$

< □ > < □ > < Ξ > < Ξ > < Ξ = のへで

Deterministic bound:

$$|\hat{s}_n - s_n| \leq u(1 + \gamma_n) \sum_{i=2}^n |s_i|$$

Probabilistic bound:

$$|\hat{s}_n - s_n| \leq \lambda u (1 + \gamma_n) \left(\sum_{i=2}^n s_i^2\right)^{1/2}$$

with failure probability at most $2 \exp\left(-\frac{\lambda^2}{2}\right)$

• Not good enough: $(1 + \gamma_n)$ blows up when nu > 1!

Spring 2020 23 / 32

Second idea: why use the bound

$$\left|\delta_i\prod_{j=i+1}^n(1+\delta_j)\right|\leq u(1+\gamma_n),$$

when the left-hand side is **probably** much smaller?

Relax Azuma's inequality by allowing the bounds to fail with small probability.

Theorem (Azuma's Inequality, Probabilistic Version)

Suppose a martingale $\{X_1, \ldots, X_n\}$ satisfies

 $|X_i - X_{i-1}| \le c_i, \quad i = 2:n$

with total failure probability at most η . Then

$$Pr(|X_n-X_1|\geq\xi)\leq 2\exp\left(-\frac{\xi^2}{2\sum_{i=2}^n c_i^2}\right)+\eta.$$

Using $\eta = Q(\lambda)$, we can replace γ_n with $\tilde{\gamma}_n(\lambda)$ in our bounds at minimal cost!

Deterministic bound:

$$|\hat{s}_n - s_n| \leq u(1 + \gamma_n) \sum_{i=2}^n |s_i|$$

Probabilistic bound:

$$|\hat{s}_n - s_n| \leq \lambda u (1 + \tilde{\gamma}_n(\lambda)) \left(\sum_{i=2}^n s_i^2\right)^{1/2}$$

with failure probability at most $2Q(\lambda)$.

• Now works well when nu>1 and $\lambda\sqrt{n}u\ll 1$

Spring 2020 26 / 32

Numerical Experiments

Half precison, uniform [-1,1] data

FIG. 6.2. Backward error bounds for the half precision computation of $\mathbf{a}^T \mathbf{b}$, where \mathbf{a} and \mathbf{b} are random uniform [-1,1] vectors, $N_{test} = 100$, and $\lambda = 3$. Left: The horizontal line represents the unit roundoff $u = 2^{-11}$, and the vertical line represents the value of n for which nu > 1.

- $\tilde{\gamma}_n$: the Higham/Mary probabilistic bound
- μ : the deterministic running bound
- ν : our new probabilistic bound
- ϵ : the true error

315

- 4 回 ト 4 ミト 4 ミト

< □ ▶

Numerical Experiments

Quarter precison, uniform [-1,1] data

FIG. 6.3. Backward error bounds for the quarter precision computation of $\mathbf{a}^T \mathbf{b}$, where \mathbf{a} and \mathbf{b} are random uniform [-1, 1] vectors, $N_{test} = 100$, and $\lambda = 3$. Error bounds are plotted as 1 when their value exceeds 1. Left: the horizontal line represents the unit roundoff $u = 2^{-5}$. Vertical lines represent the values of n for which nu > 1 and $\lambda \sqrt{nu} > 1$.

Single/Half precision: we typically overestimate the error by a factor of 10
Quarter precision: similar performance to the deterministic running bound

Numerical Experiments

Half precison, uniform [-1,1] data

FIG. 6.4. Results in half precision arithmetic with $N_{test} = 10$ and $\lambda = 3$. Error bounds are plotted as 1 when their value exceeds 1. Left: the horizontal line represents the unit roundoff $u = 2^{-11}$. Vertical lines represent the values of n for which nu > 1 and $\lambda \sqrt{nu} > 1$.

- Our estimates break down when $\lambda \sqrt{nu} > 1$
- Still fails to capture behavior in practice for large *n*

500

▲口▶ ▲圖▶ ▲필▶ ▲필▶ - 퇴범

Summary of bounds:

	Deterministic	Probabilistic	
Data	$\gamma_n \sum_{i=1}^n x_i $	$\tilde{\gamma}_n \sum_{i=1}^n x_i $	
Intermediate Sums	$u(1+\gamma_n)\sum_{i=2}^n s_i $	$\lambda u(1+\tilde{\gamma}_n(\lambda))\left(\sum_{i=2}^n s_i^2\right)^{1/2}$	
Running Bound	$u\sum_{i=1}^{n} \hat{s}_{i} $???	

• (How) can we drop the $(1 + \tilde{\gamma}_n(\lambda))$ term?

• (How) can we develop an effective running bound?

Conclusions

Thanks for listening!

For Further Reading I

Nicholas J. Higham

Accuracy and Stability of Numerical Algorithms, 2ed. 2002.

Cleve Moler

"Half Precision" 16-bit Floating Point Arithmetic https://blogs.mathworks.com/cleve/2017/05/08/ half-precision-16-bit-floating-point-arithmetic/

Nicholas J. Higham and Theo Mary A New Approach to Probabilistic Rounding Error Analysis http://eprints.maths.manchester.ac.uk/2673/1/paper.pdf

Fan Chung and Linyuan Lu Concentration Inequalities and Martingale Inequalities—a Survey http://people.math.sc.edu/lu/papers/concen.pdf

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□■ 釣�?