Rank Revealing QR Factorizations

Benjamin Daniel Arvind Saibaba Ilse Ipsen

NC State University

July 24, 2020

Benjamin Daniel, Arvind Saibaba, Ilse Ipsen Rank Revealing QR Factorizations

- Motivation and Definitions
- Literature
- Our Contributions
 - Theorems
 - Numerical Results

▲ 同 ▶ → 三 ▶

B> B

Finding the numerical rank of a matrix has applications in subset selection, least squares, regularization, matrix approximation, etc (Chan and Hansen 1991).

The SVD is the "best" rank-revealing factorization. However, it is computationally expensive, and does not have interpretability.

Many researchers have used QR factorizations to determine numerical rank.

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with m > n and $1 \le k < n$. A Rank-Revealing QR of \mathbf{A} is a QR factorization of $\mathbf{A}\Pi$,

$$\mathbf{A} \begin{bmatrix} \mathbf{\Pi}_1 & \mathbf{\Pi}_2 \end{bmatrix} = \mathbf{Q} \begin{bmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} \\ \mathbf{0} & \mathbf{R}_{22} \end{bmatrix}$$

where $\mathbf{R}_{11} \in \mathbb{R}^{k \times k}$ and Π is a permutation chosen such that there are polynomials $p_1(n, k)$ and $p_2(n, k)$ such that for $1 \le i \le k$ and $1 \le j \le n - k$, we have

$$rac{\sigma_i(\mathbf{R}_{11})}{p_1(n,k)} \leq \sigma_k(\mathbf{A}) \qquad ext{and} \qquad \sigma_j(\mathbf{R}_{22}) \leq \sigma_{j+k}(\mathbf{A})p_2(n,k).$$

The Rank-Revealing QR Factorization in Literature

- Businger and Golub (1965)
- Golub, Klema, and Stewart (1976)
- Hong and Pan (1992)
- Chandrasekaran and Ipsen (1994)
- Gu and Eisenstat (1996)

The Rank-Revealing QR Factorization in Literature

- Businger and Golub (1965)
- Golub, Klema, and Stewart (1976)
- Hong and Pan (1992)
- Chandrasekaran and Ipsen (1994)
- Gu and Eisenstat (1996)

Key Observation: $\mathbf{A}\mathbf{\Pi} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathrm{T}}\mathbf{\Pi}$, so permuting columns of \mathbf{A} is equivalent to permuting columns of \mathbf{V}^{T} .

Let

$$\mathbf{V} = \begin{bmatrix} \mathbf{V}_k & \mathbf{V}_\perp \end{bmatrix}.$$

Instead of choosing Π to select columns of \mathbf{A} , choose Π such that $\mathbf{V}_k^{\mathrm{T}} \mathbf{\Pi}_1$ is large, $(\mathbf{V}_k^{\mathrm{T}} \mathbf{\Pi}_1 \approx \mathbf{I}_k)$.

This Π should also select columns of **A** such that $A\Pi_1$ (**R**₁₁) is well-conditioned.

Theorem: Based on Golub, Klema Stewart (1976)

Given an permutation Π such that $\mathbf{V}_k^{\mathrm{T}} \Pi_1$ is nonsingular, we have the following bounds:

•
$$\sigma_j(\mathbf{R}_{22}) \leq \sigma_{k+j}(\mathbf{A}) \| (\mathbf{V}_k^{\mathrm{T}} \mathbf{\Pi}_1)^{-1} \|_2 \qquad 1 \leq j \leq n-k.$$

•
$$\frac{\sigma_i(\mathbf{A})}{\|(\mathbf{V}_k^{\mathsf{T}}\mathbf{\Pi}_1)^{-1}\|_2} \leq \sigma_i(\mathbf{R}_{11})$$
 $1 \leq i \leq k$.

Consequence of Interlacing Property of Singular Values

•
$$\sigma_i(\mathbf{R}_{11}) \leq \sigma_i(\mathbf{A})$$
 for $1 \leq i \leq k$.

•
$$\sigma_{k+j}(\mathbf{A}) \leq \sigma_j(\mathbf{R}_{22})$$
 for $1 \leq j \leq n-k$.

| 4 同 🕨 🛛 🖃 🕨 🤘

We denote by $0 \le \theta_1 \le \ldots \le \theta_k \le \frac{\pi}{2}$, the principal angles between $\mathcal{R}(\mathbf{V}_k)$ and $\mathcal{R}(\mathbf{\Pi}_1)$.

Then $\frac{1}{\|(\mathbf{V}_k^{\mathrm{T}}\mathbf{\Pi}_1)^{-1}\|_2} = \cos(\theta_k)$. Using the results from the previous slide:

•
$$\sigma_{k+j}(\mathbf{A}) \le \sigma_j(\mathbf{R}_{22}) \le \frac{\sigma_{k+j}(\mathbf{A})}{\cos(\theta_k)}$$
 $1 \le j \le n-k$.
• $\sigma_i(\mathbf{A})\cos(\theta_k) \le \sigma_i(\mathbf{R}_{11}) \le \sigma_i(\mathbf{A})$ $1 \le i \le k$.

A rank-revealing QR is strong if for some parameter $f \ge 1$, we have the following bounds of the singular values of \mathbf{R}_{11} and \mathbf{R}_{22} as follows

$$\frac{\sigma_i(\mathbf{A})}{\sqrt{1+f^2k(n-k)}} \leq \sigma_i(\mathbf{R}_{11}) \quad 1 \leq i \leq k$$

$$\sigma_j(\mathbf{R}_{22}) \leq \sqrt{1+f^2k(n-k)\sigma_{j+k}(\mathbf{A})} \quad 1 \leq j \leq n-k.$$

In addition, R_{11} nonsingular and we can bound the elements of $R_{11}^{-1}R_{12}$ in magnitude by

$$|(\mathbf{R}_{11}^{-1}\mathbf{R}_{12})_{ij}| \le f, \quad 1 \le i \le k, \ 1 \le j \le n-k.$$

- Based on Golub, Klema, and Stewart: Reveal the rank of A by doing a strong rank-revealing QR on V^T_k.
- \mathbf{V}_k is expensive to compute.
- Use randomized SVD to find a **W** with orthonormal columns such that $\mathbf{W} \approx \mathbf{V}_k$.
- Perform strong rank-revealing QR on \mathbf{W}^{T} instead of \mathbf{V}_k .

This leads to the following approach:

Algorithm 1: Our Approach to Rank Revealing QR

Use randomization techniques to find $\mathbf{W} \approx \mathbf{V}_k$. Find strong RRQR decomposition of \mathbf{W}^{T} , $\mathbf{W}^{\mathrm{T}}\mathbf{\Pi} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$. Compute QR decomposition of $\mathbf{A}\mathbf{\Pi}$.

/□ ▶ ◀ ⋽ ▶ ◀

Recall from earlier:

The \mathbf{R}_{22} Bound

If $\mathbf{V}_k^{\mathrm{T}} \mathbf{\Pi}_1$ is nonsingular, then

$$\sigma_j(\mathsf{R}_{22}) \leq \sigma_{k+j}(\mathsf{A}) \| (\mathsf{V}_k^{\mathrm{T}} \mathbf{\Pi}_1)^{-1} \|_2 \quad 1 \leq j \leq n-k.$$

Can we generalize this from \mathbf{V}_k to \mathbf{W} ?

Theorem: Generalized R₂₂ Bound

Let $\mathbf{W} \in \mathbb{R}^{n \times k}$ have orthonormal columns with $\mathbf{W}^{\mathrm{T}} \mathbf{\Pi}_1$ nonsingular. Then

$$\sigma_j(\mathbf{R}_{22}) \leq \sigma_j(\mathbf{A}(\mathbf{I} - \mathbf{W}\mathbf{W}^{\mathrm{T}})) \| (\mathbf{W}^{\mathrm{T}} \mathbf{\Pi}_1)^{-1} \|_2 \qquad \text{for } 1 \leq j \leq n-k.$$

・ロト ・四ト ・ヨト ・ヨト

Theorem: Generalized \mathbf{R}_{22} Bound

Let $\mathbf{W} \in \mathbb{R}^{n \times k}$ have orthonormal columns with $\mathbf{W}^{\mathrm{T}} \mathbf{\Pi}_1$ nonsingular. Then

$$\sigma_j(\mathsf{R}_{22}) \leq \sigma_j(\mathsf{A}(\mathsf{I} - \mathsf{W} \mathsf{W}^{\mathrm{T}})) \| (\mathsf{W}^{\mathrm{T}} \mathsf{\Pi}_1)^{-1} \|_2 \qquad \text{for } 1 \leq j \leq n-k.$$

Let $\mathbf{W} = \mathbf{V}_k$ then

$$\sigma_j(\mathbf{A}(\mathbf{I} - \mathbf{W}\mathbf{W}^{\mathrm{T}})) = \sigma_j(\mathbf{A}(\mathbf{I} - \mathbf{V}_k\mathbf{V}_k^{\mathrm{T}})) = \sigma_{j+k}(\mathbf{A})$$

and the above statement becomes

$$\sigma_j(\mathsf{R}_{22}) \leq \sigma_{k+j}(\mathsf{A}) \| (\mathsf{V}_k^{\mathrm{T}} \mathbf{\Pi}_1)^{-1} \|_2.$$

Generalized **R**₁₁ Bound

The \mathbf{R}_{11} bound

If $\mathbf{V}_k^{\mathrm{T}} \mathbf{\Pi}_1$ is nonsingular, then

$$\frac{\sigma_i(\mathbf{A})}{\|(\mathbf{V}_k^{\mathrm{T}}\mathbf{\Pi}_1)^{-1}\|_2} \leq \sigma_i(\mathbf{R}_{11}) \qquad 1 \leq i \leq k.$$

Again, we wish to generalize this from \mathbf{V}_k to \mathbf{W} .

Conjecture: Generalized R_{11} Bound

Let $\mathbf{W} \in \mathbb{R}^{n \times k}$ have orthonormal columns with $\mathbf{W}^{\mathrm{T}} \mathbf{\Pi}_1$ nonsingular. Then

$$\frac{\sigma_i(\mathbf{A}\mathbf{W}\mathbf{W}^{\mathrm{T}})}{\|(\mathbf{W}^{\mathrm{T}}\mathbf{\Pi}_1)^{-1}\|_2} \stackrel{?}{\leq} \sigma_i(\mathbf{R}_{11}) \qquad 1 \leq i \leq k.$$

< ロ > < 同 > < 回 > < 回 >

R₁₁ Bound Counterexample

The bound

$$\frac{\sigma_i(\mathbf{A}\mathbf{W}\mathbf{W}^{\mathrm{T}})}{\|(\mathbf{W}^{\mathrm{T}}\mathbf{\Pi}_1)^{-1}\|_2} \leq \sigma_i(\mathbf{R}_{11}) \qquad 1 \leq i \leq k.$$

does NOT hold in general!

Example: Consider the case where m = n = 2 and k = 1 with

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \qquad \mathbf{W} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad \text{and} \quad \mathbf{\Pi} = \mathbf{I}_2.$$

Then

$$\frac{\|\mathbf{A}\mathbf{W}\mathbf{W}^{\mathrm{T}}\|_{2}}{\|(\mathbf{W}^{\mathrm{T}}\mathbf{\Pi}_{1})^{-1}\|_{2}} = \frac{\sqrt{5}}{2} > 1 = \|\mathbf{R}_{11}\|_{2}.$$

R₁₁ Bound Counterexample with Assumptions

Consider another case where m = n = 2 and k = 1 with

$$\mathbf{A} = egin{bmatrix} 1 & 1 \ 0 & 0 \end{bmatrix}.$$

Then **A** has SVD $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$, where

$$\mathbf{U} = \mathbf{I}_2, \quad \mathbf{\Sigma} = \begin{bmatrix} \sqrt{2} & \\ & 0 \end{bmatrix}, \text{ and } \mathbf{V} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}.$$

Let $0 < \epsilon < 1 - rac{1}{\sqrt{2}}$ and choose $0 < \delta$ such that

$$\mathbf{W} = \begin{bmatrix} \frac{1}{\sqrt{2}} + \epsilon \\ \frac{1}{\sqrt{2}} - \delta \end{bmatrix}$$

has unit norm.

Consider again

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \qquad \mathbf{V}_k = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \qquad \mathbf{W} = \begin{bmatrix} \frac{1}{\sqrt{2}} + \epsilon \\ \frac{1}{\sqrt{2}} - \delta \end{bmatrix}$$

Since the first element of W is larger, choose $\Pi=I.$ Let $A\Pi=QR,$ where Q=I and R=A. We compute

$$\frac{\|\mathbf{A}\mathbf{W}\mathbf{W}^{\mathrm{T}}\|_{2}}{\|(\mathbf{W}^{\mathrm{T}}\mathbf{\Pi}_{1})^{-1}\|_{2}} > 1 = \|\mathbf{R}_{11}\|_{2}.$$

We have

- W is an epsilon perturbation of V_k .
- $\mathbf{W}^{\mathrm{T}}\mathbf{\Pi}_{1}$ is optimal

The bound doesn't hold.

Generalized \mathbf{R}_{11} Bound

Theorem: Generalized \mathbf{R}_{11} Bound

Let $\mathbf{W}^{\mathrm{T}}\mathbf{\Pi}_{1}$ be nonsingular and let

$$\sin heta_k(\mathcal{R}(\mathbf{W}),\mathcal{R}(\mathbf{V_k})) < rac{1}{\|(\mathbf{W}^{ ext{T}}\mathbf{\Pi}_1)^{-1}\|_2}.$$

Then

•
$$\mathbf{V}_{k}^{\mathrm{T}} \mathbf{\Pi}_{1}$$
 is nonsingular.
• For $1 \leq i \leq k$,
 $\sigma_{i}(\mathbf{A}) \left(\frac{1}{\|(\mathbf{W}^{\mathrm{T}} \mathbf{\Pi}_{1})^{-1}\|_{2}} - \sin \theta_{k}(\mathcal{R}(\mathbf{W}), \mathcal{R}(\mathbf{V}_{k})) \right) \leq \sigma_{i}(\mathbf{R}_{11}).$

If $\mathbf{W} = \mathbf{V}_k$, then $\sin \theta_k(\mathcal{R}(\mathbf{W}), \mathcal{R}(\mathbf{V}_k)) = 0$ and the bound becomes

$$\frac{\sigma_i(\mathbf{A})}{\|(\mathbf{V}_k^{\mathrm{T}}\mathbf{\Pi}_1)^{-1}\|_2} \leq \sigma_i(\mathbf{R}_{11}).$$

伺 ト イヨ ト イヨ ト

For our algorithm, we use a randomized range finder based on Algorithm 4.4 in Halko, Martinsson, and Tropp (2009) to find an orthonormal matrix \mathbf{Q} with $\mathcal{R}(\mathbf{Q}) \approx \mathcal{R}(\mathbf{A})$

The right k dominant singular vectors of $\mathbf{A}\mathbf{Q}\mathbf{Q}^{\mathrm{T}}$ gives us our desired \mathbf{W} .

Algorithm 2: Rank Revealing QR with Randomized SVD Use Randomized SVD to find $\mathbf{W} \approx \mathbf{V}_k$. Find strong RRQR decomposition of \mathbf{W}^{T} , $\mathbf{W}^{\mathrm{T}}\mathbf{\Pi} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$. Compute QR decomposition of $\mathbf{A}\mathbf{\Pi}$.

Test matrices:

- Kahan Matrix
- Gravity Matrix

/□ ▶ ◀ ⋽ ▶ ◀

Numerical Results - R_{11}

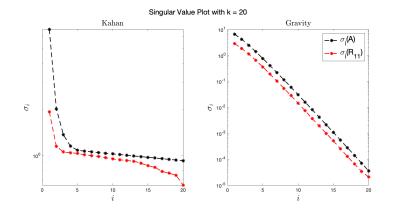


Figure: Singular Values of A and R_{11} for two test matrices.

Numerical Results - R_{11}

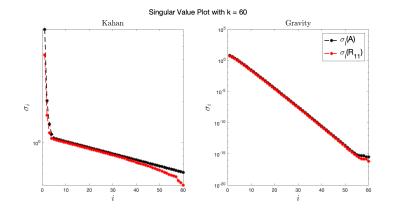


Figure: Singular Values of A and R_{11} for two test matrices.

Numerical Results - R₂₂

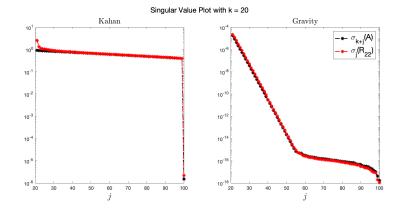


Figure: Singular Values of A and R_{22} for two test matrices.

Numerical Results - R₂₂

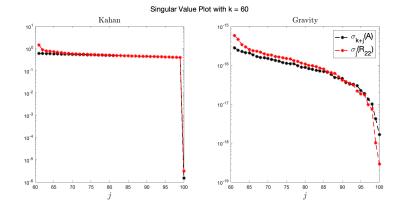


Figure: Singular Values of A and R_{11} for two test matrices.

- Further explore lower bounds for **R**₁₁ with minimal assumptions on **W**.
- Construct bounds specific to our Algorithm.
- Finish the analysis of the computational cost of our algorithm.

- P. BUSINGER AND G. GOLUB, Linear least squares solutions by householder transformations, Numerische Mathematik, 7 (1966), pp. 269–276.
- T. F. CHAN AND P. C. HANSEN, Some applications of the rank revealing qr factorization, SIAM Journal on Scientific and Statistical Computing, 13 (1992), pp. 727–741.
- S. CHANDRASEKARAN AND I. C. F. IPSEN, *On rank-revealing factorisations*, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 592–622.

References II

- G. GOLUB, V. KLEMA, AND G. STEWART, Rank degeneracy and least squares problems, Tech. Rep. STAN-CS-76-559, Computer Science Department, Stanford University, 1976.
- M. GU AND S. C. EISENSTAT, Efficient algorithms for computing a strong rank-revealing qr factorization, SIAM Journal on Scientific Computing, 17 (1996), pp. 848–869.
- N. HALKO, P. G. MARTINSSON, AND J. A. TROPP, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Review, 53 (2011), pp. 217–288.
- Y. HONG AND C.-T. PAN, *Rank-revealing qr factorizations and the singular value decomposition*, Mathematics of Computation, 58 (1992), pp. 213–232.