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Rank Revealing Factorizations

Finding the numerical rank of a matrix has applications in subset
selection, least squares, regularization, matrix approximation, etc
(Chan and Hansen 1991).

The SVD is the “best” rank-revealing factorization. However, it is
computationally expensive, and does not have interpretability.

Many researchers have used QR factorizations to determine
numerical rank.
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Rank-Revealing QR Factorization

Let A ∈ Rm×n with m > n and 1 ≤ k < n. A Rank-Revealing QR
of A is a QR factorization of AΠ,

A
[
Π1 Π2

]
= Q

[
R11 R12

0 R22

]
where R11 ∈ Rk×k and Π is a permutation chosen such that there
are polynomials p1(n, k) and p2(n, k) such that for 1 ≤ i ≤ k and
1 ≤ j ≤ n − k , we have

σi (R11)

p1(n, k)
≤ σk(A) and σj(R22) ≤ σj+k(A)p2(n, k).
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The Rank-Revealing QR Factorization in Literature

Businger and Golub (1965)

Golub, Klema, and Stewart (1976)

Hong and Pan (1992)

Chandrasekaran and Ipsen (1994)

Gu and Eisenstat (1996)
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Golub, Klema, and Stewart’s Algorithm

Key Observation: AΠ = UΣVTΠ, so permuting columns of A is
equivalent to permuting columns of VT.

Let
V =

[
Vk V⊥

]
.

Instead of choosing Π to select columns of A, choose Π such that
VT

k Π1 is large, (VT
k Π1 ≈ Ik).

This Π should also select columns of A such that AΠ1 (R11) is
well-conditioned.
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Bounds on Singular Values

Theorem: Based on Golub, Klema Stewart (1976)

Given an permutation Π such that VT
k Π1 is nonsingular, we have

the following bounds:

σj(R22) ≤ σk+j(A)‖(VT
k Π1)−1‖2 1 ≤ j ≤ n − k.

σi (A)

‖(VT
k Π1)−1‖2

≤ σi (R11) 1 ≤ i ≤ k.

Consequence of Interlacing Property of Singular Values

σi (R11) ≤ σi (A) for 1 ≤ i ≤ k .

σk+j(A) ≤ σj(R22) for 1 ≤ j ≤ n − k .
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Bounds on Singular Values

We denote by 0 ≤ θ1 ≤ . . . ≤ θk ≤ π
2 , the principal angles between

R(Vk) and R(Π1).

Then 1
‖(VT

k Π1)−1‖2
= cos(θk). Using the results from the previous

slide:

σk+j(A) ≤ σj(R22) ≤ σk+j (A)
cos(θk )

1 ≤ j ≤ n − k.

σi (A) cos(θk) ≤ σi (R11) ≤ σi (A) 1 ≤ i ≤ k .
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Strong Rank-Revealing QR (Gu and Eisenstat 1996)

A rank-revealing QR is strong if for some parameter f ≥ 1, we
have the following bounds of the singular values of R11 and R22 as
follows

σi (A)√
1 + f 2k(n − k)

≤ σi (R11) 1 ≤ i ≤ k

σj(R22) ≤
√

1 + f 2k(n − k)σj+k(A) 1 ≤ j ≤ n − k .

In addition, R11 nonsingular and we can bound the elements of
R−111 R12 in magnitude by

|(R−111 R12)ij | ≤ f , 1 ≤ i ≤ k , 1 ≤ j ≤ n − k .
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Our Approach

Based on Golub, Klema, and Stewart: Reveal the rank of A by
doing a strong rank-revealing QR on VT

k .

Vk is expensive to compute.

Use randomized SVD to find a W with orthonormal columns
such that W ≈ Vk .

Perform strong rank-revealing QR on WT instead of Vk .
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Our Approach

This leads to the following approach:

Algorithm 1: Our Approach to Rank Revealing QR

Use randomization techniques to find W ≈ Vk .
Find strong RRQR decomposition of WT, WTΠ = Q̂R̂.
Compute QR decomposition of AΠ.
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Generalized R22 Bound

Recall from earlier:

The R22 Bound

If VT
k Π1 is nonsingular, then

σj(R22) ≤ σk+j(A)‖(VT
k Π1)−1‖2 1 ≤ j ≤ n − k .

Can we generalize this from Vk to W?

Theorem: Generalized R22 Bound

Let W ∈ Rn×k have orthonormal columns with WTΠ1

nonsingular. Then

σj(R22) ≤ σj(A(I−WWT))‖(WTΠ1)−1‖2 for 1 ≤ j ≤ n − k .
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Generalized R22 Bound

Theorem: Generalized R22 Bound

Let W ∈ Rn×k have orthonormal columns with WTΠ1

nonsingular. Then

σj(R22) ≤ σj(A(I−WWT))‖(WTΠ1)−1‖2 for 1 ≤ j ≤ n − k .

Let W = Vk then

σj(A(I−WWT)) = σj(A(I− VkVT
k )) = σj+k(A)

and the above statement becomes

σj(R22) ≤ σk+j(A)‖(VT
k Π1)−1‖2.
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Generalized R11 Bound

The R11 bound

If VT
k Π1 is nonsingular, then

σi (A)

‖(VT
k Π1)−1‖2

≤ σi (R11) 1 ≤ i ≤ k .

Again, we wish to generalize this from Vk to W.

Conjecture: Generalized R11 Bound

Let W ∈ Rn×k have orthonormal columns with WTΠ1

nonsingular. Then

σi (AWWT)

‖(WTΠ1)−1‖2
?
≤ σi (R11) 1 ≤ i ≤ k.
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R11 Bound Counterexample

The bound

σi (AWWT)

‖(WTΠ1)−1‖2
≤ σi (R11) 1 ≤ i ≤ k.

does NOT hold in general!

Example: Consider the case where m = n = 2 and k = 1 with

A =

[
1 0
0 2

]
, W =

1√
2

[
1
1

]
, and Π = I2.

Then
‖AWWT‖2
‖(WTΠ1)−1‖2

=

√
5

2
> 1 = ‖R11‖2.
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R11 Bound Counterexample with Assumptions

Consider another case where m = n = 2 and k = 1 with

A =

[
1 1
0 0

]
.

Then A has SVD A = UΣVT, where

U = I2, Σ =

[√
2

0

]
, and V =

[
1√
2
− 1√

2
1√
2

1√
2

]
.

Let 0 < ε < 1− 1√
2

and choose 0 < δ such that

W =

[
1√
2

+ ε
1√
2
− δ

]

has unit norm.
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R11 Bound Counterexample with Assumptions

Consider again

A =

[
1 1
0 0

]
, Vk =

[
1√
2
1√
2

]
, W =

[
1√
2

+ ε
1√
2
− δ

]
Since the first element of W is larger, choose Π = I. Let
AΠ = QR, where Q = I and R = A. We compute

‖AWWT‖2
‖(WTΠ1)−1‖2

> 1 = ‖R11‖2.

We have

W is an epsilon perturbation of Vk .

WTΠ1 is optimal

The bound doesn’t hold.
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Generalized R11 Bound

Theorem: Generalized R11 Bound

Let WTΠ1 be nonsingular and let

sin θk(R(W),R(Vk)) <
1

‖(WTΠ1)−1‖2
.

Then

VT
k Π1 is nonsingular.

For 1 ≤ i ≤ k ,

σi (A)

(
1

‖(WTΠ1)−1‖2
− sin θk(R(W),R(Vk))

)
≤ σi (R11).

If W = Vk , then sin θk(R(W),R(Vk)) = 0 and the bound
becomes

σi (A)

‖(VT
k Π1)−1‖2

≤ σi (R11).
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Numerical Results

For our algorithm, we use a randomized range finder based on
Algorithm 4.4 in Halko, Martinsson, and Tropp (2009) to find an
orthonormal matrix Q with R(Q) ≈ R(A)

The right k dominant singular vectors of AQQT gives us our
desired W.

Algorithm 2: Rank Revealing QR with Randomized SVD

Use Randomized SVD to find W ≈ Vk .
Find strong RRQR decomposition of WT, WTΠ = Q̂R̂.
Compute QR decomposition of AΠ.

Test matrices:

Kahan Matrix

Gravity Matrix
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Numerical Results - R11

Figure: Singular Values of A and R11 for two test matrices.
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Numerical Results - R11

Figure: Singular Values of A and R11 for two test matrices.

Benjamin Daniel, Arvind Saibaba, Ilse Ipsen Rank Revealing QR Factorizations



Numerical Results - R22

Figure: Singular Values of A and R22 for two test matrices.
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Numerical Results - R22

Figure: Singular Values of A and R11 for two test matrices.

Benjamin Daniel, Arvind Saibaba, Ilse Ipsen Rank Revealing QR Factorizations



Future Work

Further explore lower bounds for R11 with minimal
assumptions on W.

Construct bounds specific to our Algorithm.

Finish the analysis of the computational cost of our algorithm.
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