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Floating Point Representation

sign exponent (8 bits) fraction (23 bits)

02331

= 0.15625

30 22 (bit index) 1

This is represents:

(−1)0
(
1 + 2−1

)
× 222+23+24+25+26−127 = 2−3 × 1.25 =
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5

32

1Image from https://commons.wikimedia.org/wiki/File:Float_example.svg
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Error in Floating Point Addition

We assume a and b are floating point numbers.

fl(a + b) = (a + b)(1 + δ).

We also assume that |δ| ≤ u where u is unit roundoff.

Unit roundoff for IEEE single and double precision floating point numbers.

Single Precision Double Precision
u = 2−24 ≈ 5.96× 10−8 u = 2−53 ≈ 1.11× 10−16
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Summation Algorithm

Algorithm 1 Sequential Summation

Inputs: n real numbers x1, . . . , xn
Outputs: The sum:

∑n
k=1 xk

1: Sum← 0
2: for k = 1 up to n do
3: Sum← Sum + xk
4: end for
5: return Sum

Here is how we represent the partial sums

Exact computation Floating point arithmetic Index range
z1 = x1 ẑ1 = x1

z2 = x1 + x2 ẑ2 = (x1 + x2)(1 + δ2)
zk = zk−1 + xk ẑk = (ẑk−1 + xk)(1 + δk) 2 ≤ k ≤ n

zn =
∑n

k=1 xk ẑn = fl (
∑n

k=1 xk)
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Traditional Deterministic Roundoff Error Bounds∣∣∣∣zn − ẑn
zn
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|zn|
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Our Deterministic Bound

Construction Valid Range
c1 = |x1|((1 + u)n−1 − 1)
ck = |xk |((1 + u)n−k+1 − 1) 2 ≤ k ≤ n

Note that for 1 ≤ k ≤ n, ck are multiples of u, that is, ck = |xk |(u + · · · ).∣∣∣∣zn − ẑn
zn

∣∣∣∣ ≤ √n∑n
k=1 ck
|zn|
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Numerical Experiment for Our Deterministic Bound∣∣∣∣∑n
k=1 xk − fl (

∑n
k=1 xk)∑n

k=1 xk

∣∣∣∣ ≤ √n ∑n
k=1 ck
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Probabilistic Model for Roundoff Errors

We model roundoff errors as bounded zero mean random variables
I |δk | ≤ u for 2 ≤ k ≤ n
I E (δk) = 0 for 2 ≤ k ≤ n

Construction Valid Range

Z1 = x1

n∏
l=2

(1 + δl)− x1

Zk = xk
n∏

l=k

(1 + δl)− xk 2 ≤ k ≤ n

Z =
∑n

k=1 Zk

Linearity of expectation implies

E (Z ) = 0

E (Zk) = 0. 1 ≤ k ≤ n
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Azuma’s Inequality2

If A = A1 + · · ·+ An is a sum of independent real-valued random variables,
0 ≤ ak for 1 ≤ k ≤ n, 0 < δ < 1, and

|Ak − E[Ak ]| ≤ ak 1 ≤ k ≤ n.

Then with probability at least 1− δ

|A− E[A]| ≤
√

2 ln
2

δ

√√√√ n∑
k=1

a2
k .

2Theorem 5.3 in Concentration Inequalities and Martingale Inequalities: A Survey by
Chung, F. & Lu, L. 2006
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First Probabilistic Bound

Construction Valid Range
c1 = |x1|((1 + u)n−1 − 1)
ck = |xk |((1 + u)n−k+1 − 1) 2 ≤ k ≤ n

For any 0 < δ < 1, with probability at least 1− δ

∣∣∣∣zn − ẑn
zn

∣∣∣∣ ≤
√

2 ln
2

δ

√∑n
k=1 c

2
k

|zn|
.

Johnathan Rhyne Advisor: Ilse Ipsen Probabilistic Roundoff Error Analysis September 22, 2020 12 / 20



Numerical Experiment for our First Probabilistic Bound

With probability at least 1− δ,

∣∣∣∣zn − ẑn
zn
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2 ln
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δ
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Here, we use δ = 10−16 as our failure probability.
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Second Probabilistic Bound: Martingale3

A collection of random variables, M1,M2, . . . ,Mn is called Martingale if
the following are satisfied

1 E[|Mn|] is finite.

2 E[Mk |M1, . . . ,Mk−1] = Mk−1

This is also referred to as being a Martingale with respect to itself.

3Theorem 12.1 in Probability and Computing: Randomized Algorithms and
Probabilistic Analysis by Mitzenmacher, M. & Upfal, E.
Johnathan Rhyne Advisor: Ilse Ipsen Probabilistic Roundoff Error Analysis September 22, 2020 14 / 20



Azuma-Hoeffding Inequality4

If B1, . . . , Bn is a Martingale with respect to itself, 0 ≤ bk for 1 ≤ k ≤ n.
If

|Bk − Bk−1| ≤ bk−1 for 2 ≤ k ≤ n,

then for any 0 < δ < 1, with probability at least 1− δ

|Bn − B1| ≤
√

2 ln
2

δ

√√√√n−1∑
k=1

b2
k .

4Theorem 12.4 in Probability and Computing: Randomized Algorithms and
Probabilistic Analysis by Mitzenmacher, M. & Upfal, E.
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Second Probabilistic Bound

Construction Valid Range

mk = |x1|(1 + u)k−1 +
∑k+1

j=2 |xj |(1 + u)k−j+1 1 ≤ k ≤ n − 1

With probability at least 1− δ,

∣∣∣∣zn − ẑn
zn

∣∣∣∣ ≤ u

√
2 ln

2

δ

√∑n−1
k=1 m

2
k

|zn|
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Second Probabilistic Bound Numerical Experiment

With probability at least 1− δ,

∣∣∣∣zn − ẑn
zn
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Here, we use δ = 10−16 as our failure probability.
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Comparison of the Probabilistic Bounds

We derived two probabilistic bounds that hold with probability at least
1− δ. That are several orders of magnitude than the deterministic
counterparts. We also found that our first bound is much more pessimistic
than the second, more expensive one.

∣∣∣∣zn − ẑn
zn

∣∣∣∣ ≤
√

2 ln
2

δ

√∑n
k=1 c

2
k

|zn|
.

∣∣∣∣zn − ẑn
zn

∣∣∣∣ ≤ u

√
2 ln

2

δ

√∑n−1
k=1 m

2
k

|zn|
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xks With Different Signs vs. xks With the Same Sign

With δ = 10−16 as our failure probability,
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As shown above, when each of the xk values are the same sign, all bounds
are tighter, and our more pessimistic probabilistic bound becomes as
accurate as the second.
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Failure of the Second Bound
Is this a fundamental problem with the bounds?

Or do we need separate bounds depending on the structure of the
data?
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