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Sensitivity analysis for expensive models

We consider high-dimensional and high-fidelity models:
Large number of uncertain parameters
Model represents the system of interest with high accuracy
High accuracy models are often prohibitively expensive

Sensitivity analysis allows one to characterize the uncertainty in
such models

Performing sensitivity analysis can be prohibitively expensive due
to the larger number of function evaluations required

We consider a hierarchy of related models, which are organized by
fidelity/accuracy and the corresponding cost

Our goal is to perform sensitivity analysis efficiently on a
high-fidelity model by leveraging the information provided by the
cheaper, lower-fidelity models

Mike Merritt Hybrid MLMC-PCE method for GSA 2 / 20



Polynomial chaos expansions - NISP

Given a scalar-valued function Q(ξ) with random vector ξ, the
polynomial chaos expansion (PCE) of Q is given as

QPC(ξ) =

P∑
k=0

βkΨk(ξ), βk =
E[Q(ξ)Ψ(ξ)]

E[Ψ2
k(ξ)]

where {Ψk}k≥1 is a family of orthogonal polynomials, the βk’s are
the corresponding PCE coefficients, and P is the truncation level
For ξ = (ξ1, . . . , ξd), the polynomial basis is a tensor product of 1D
orthogonal polynomials

Ψk(ξ1, . . . , ξd) =

d∏
i=1

ψaki
(ξi), ak = (ak1, . . . , a

k
d),

where aki is a multi-index, denoting the degree of the ith 1D
polynomial for the kth multivariate polynomial
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Polynomial chaos expansions

The choice of polynomial basis is made to guarantee orthogonality
with respect to the distribution of ξ
(e.g. Normal and Hermite, Uniform and Legendre, etc.)1

Computing a PCE can become prohibitively expensive for a
high-dimensional Q due to the number of terms involved,

P + 1 =
(p+ d)!

p!d!
, where p = total polynomial order

PCE is also well-suited for functions with some underlying
smoothness

1Le Maıtre and Knio, Spectral methods for uncertainty quantification: with
applications to computational fluid dynamics.
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PCE for GSA

One notable benefit of PCE is the ability to compute global
sensitivity analysis (GSA) indices as a post-process
Given a square-integrable, scalar-valued f(ξ) with ξ = (ξ1, . . . , ξd),
the ANOVA decomposition of f is defined as:

f(ξ) = f0 +

d∑
i=1

fi(ξi) +

d∑
i<j

fi,j(ξi, ξj) + · · ·+ f1,...,d(ξ1,...,d)

where
f0 = E[f(ξ)]

fi(ξi) = E[f(ξ)|ξi]− f0
fi,j(ξi, ξj) = E[f(ξ)|ξi, ξj ]− fi − fj − f0 . . .

For a PC expansion, computing the ANOVA decomposition simply
involves summing the proper terms
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PCE for GSA

Given the ANOVA decomposition of f , one may define the Sobol’
indices w.r.t. u ⊆ {1, . . . , d} as:

Su(f) =
Var[E[f(ξ) | ξu]]

Var[f(ξ)]
and Tu(f) =

∑
v∩u6=∅

Sv(f),

where the order of Su is |u| and Tu is a total index
In order to compute the Sobol’ indices of QPC , we have

Var[QPC ] = E[Q2
PC ]− E[QPC ]2 =

P∑
k=1

β2k E[Ψ2
k]

Su(QPC) =

∑
k∈Ku

β2k E[Ψ2
k]∑P

k=1 β
2
k E[Ψ2

k]

Here, Ku denotes the indices of the PCE terms that only depend
on the parameter subset ξu
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PCE for GSA

The limiting factors in computing GSA indices with a PCE are the
error in each β̂k and the truncation level P

For many polynomial families, the norms E[Ψ2
k] are known

analytically, so the real cost in building a PCE is in computing the
spectral projection, E[QΨk]

A variety of methods exist for this task, including quadrature
methods, Galerkin projection, least squares approximations2

We will estimate this expectation using Monte Carlo integration

In the case of a high-dimensional Q, we will attempt to accelerate
the estimation of E[QΨk] using a hierarchy of related models

2Crestaux, Le Maıtre, and Martinez, “Polynomial chaos expansion for sensitivity
analysis”.
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Monte Carlo sampling

Let Q(ξ) be a scalar quantity of interest from a high-fidelity
model, where ξ is a vector of uncertain parameters
We want to compute E[Q(ξ)] and we define the estimator

Q̂ =
1

N

N∑
i=1

Q(ξi)

If ξ1, . . . , ξN are i.i.d., then Q̂ is an unbiased estimator
(i.e. E[Q̂] = E[Q]) and the mean-squared error (MSE) is given by

E[(Q̂− E[Q])2] =
Var[Q]

N
+ (E[Q̂−Q])2 =

Var[Q]

N

Reducing the MSE through sampling alone can be expensive
because convergence will be slow: rate O(N−1/2)

Another approach is to decrease Var[Q], without changing E[Q]

In general, estimator bias is not guaranteed to be zero
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Multi-level Monte Carlo

Let Q0, Q1, . . . , QL denote a hierarchy of models parameterized by
a scalar ` with associated costs C0 ≤ C1 ≤ · · · ≤ CL for each “level”

A natural example of this is solving a differential equation on a
mesh where the number of points is controlled by the index ` for Q`

If we want to estimate E[QL], we can use

E[QL] =

L∑
`=0

E[Q` −Q`−1], Q−1 = 0

This defines a multi-level Monte Carlo (MLMC) estimator

Q̂ML
L =

L∑
`=0

̂Q` −Q`−1 =

L∑
`=0

1

N`

N∑̀
i=1

Qi
` −Qi

`−1,

with the associated cost Ctot =
∑L

`=0N`(C` + C`−1)
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Multi-level Monte Carlo

The MSE of an unbiased Q̂ML
L can be expressed as

E
[
(Q̂ML

L − E[QL])2
]

= Var[Q̂ML
L ] =

L∑
`=0

Var [Q` −Q`−1]

N`
,

where independent sampling among levels removes any covariance
The goal then is to minimize Var[Q̂ML

L ] by appropriately
allocating N` samples to each level
In the case that Var[Q`−Q`−1] is decreasing for `→ L, one is able
to evaluate the majority of samples at the cheaper levels
The optimization problem:

min
N0,...,NL

Ctot s.t. Var[Q̂ML
L ] ≤ ε2

can be solved in closed form for the optimal sample allocation3

3Giles, “Multilevel monte carlo methods”.
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MLMC for PCE formulation

Returning to the estimation of PCE coefficients, we decompose the
spectral projection as

E[QΨk] =

L∑
`=0

E[(Q` −Q`−1)Ψk],

which leads to the multi-level estimator

β̂k =
1

E[Ψ2
k]

L∑
`=0

̂(Q` −Q`−1)Ψk =
1

E[Ψ2
k]

L∑
`=0

1

N`

N∑̀
i=1

(Qi
` −Qi

`−1)Ψ
i
k

In this case, the variance of the estimator can be expressed as

Var[β̂k] =
1

E[Ψ2
k]2

L∑
`=0

Var[(Q` −Q`−1)Ψk]

N`
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MLMC for PCE formulation

We want to find an optimal sampling allocation scheme that
balances the estimator variance and the cost of sampling the QoIs
We have the optimization problem:

min
N0,...,NL

L∑
`=0

N`C` + µ2
(
Var[β̂k]− ε2

)
,

where µ2 is a Lagrange multipler and ε2 is the target variance.
The optimal sample allocation4 can be shown to be

N` = µ

√
Var[(Q` −Q`−1)Ψk]

E[Ψ2
k] C`

where (1)

µ = ε−2
L∑

`=0

√
Var[(Q` −Q`−1)Ψk] C`

E[Ψ2
k]

(2)

4Giles, “Multilevel monte carlo methods”.
Mike Merritt Hybrid MLMC-PCE method for GSA 12 / 20



Computing ensembles of PCE coefficients

For the purposes of GSA, we need a set of PCE coefficients. Thus
for L levels and P coefficients, we estimate

E[QΨk] =

L∑
`=0

E[(Q` −Q`−1)Ψk], k = 0, 1, . . . , P

Ideally, we share N` samples when estimating
E[(Q` −Q`−1)Ψk] for k = 1, . . . , P

We have two initial sample allocation schemes:
1 Individual: estimate each βk separately, each β̂k has the target

variance, with no sample sharing this is expensive
2 Worst case: same samples at each level where N` is computed to

minimize max
k

Var[(Q` −Q`−1)Ψk] - the worst case coefficient

These schemes work for more general sets of PCE coefficients
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Example algorithm - estimating a single PCE coefficient

Algorithm 1 Estimate kth PCE coefficient
Input: Multi-level model, target accuracy ε2, number of pilot samples N ,

coefficient to estimate k, max iterations
Output: coefficients β̂k, estimator variance V[β̂k], function evaluations
1: Draw N pilot samples: ξpilot {Distribution included with the model}
2: Evaluate Ψk and Q` −Q`−1 for ` = 0, . . . , L at ξpilot
3: while Var[β̂k] > ε2 and iteration < max iterations do
4: for ` = 0, . . . , L do
5: Estimate Var[(Q` −Q`−1)Ψk]

6: Compute N` in order to minimize Var[β̂k] {See (1) and (2)}
7: Draw additional samples of ξ
8: Evaluate functions Ψk and Q` −Q`−1 for ` = 0, . . . , L
9: end for

10: Estimate E[(Q` −Q`−1)Ψk]

11: Compute Var[β̂k]
12: end while
13: Compute final estimate of β̂k
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Example with Ishigami function

f(ξ) = sin(ξ1) + a sin2(ξ2) + bξ3 sin(ξ1)

ξi ∼ U [−π, π], i = 1, 2, 3 a = 7, b = 0.1

We take the first 20 PCE modes and compute 2000 realizations of
the coefficients, looking at the mean and variance of β̂k

0 5 10 15
pce coefficients (k)

−2

0

2

4

E[bk] for Ishigami with 2000 samples

0 5 10 15
pce coefficients (k)

0.000

0.025

0.050

0.075

0.100

V[bk]for Ishigami with 2000 samples
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Example with multi-level Ishigami

Q = sin(ξ1) + a sin2(ξ2) + bξ43 sin(ξ1)

Q0 : a = (0.6)7.0, b = (0.6)0.1, C0 = 1

Q1 : a = (0.8)7.0, b = (0.8)0.1, C1 = 10

Q2 : a = (1.0)7.0, b = (1.0)0.1, C2 = 100

(3)

We compare the individual and worst-case methods for

The worst case coefficient is β15. Cost is provided in the legend.
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Globally optimal sample allocation scheme

We want a sample allocation method that balances the total cost
and variance for each of the estimated coefficients
Moreover, the real goal is in targeting the Sobol’ indices,
minimizing the variance of Ŝu. Thus given a PCE

QPC =

P∑
k=1

β̂kΨk we consider Var

[∑
k∈Ku

(β̂k)2 E[Ψ2
k]∑P

k=1(β̂k)2 E[Ψ2
k]

]

We instead can target particular indices by subdividing

Var

[
P∑

k=1

β̂2k E[Ψ2
k]

]
=

P∑
k=1

Var[β̂2k] E[Ψ2
k]2 +

∑
k 6=z

E[Ψ2
k]E[Ψ2

z]Cov
[
β̂2k, β̂

2
z

]

Expressions are needed for Var[β̂2k] and Cov
[
β̂2k, β̂

2
z

]
in terms of

moments of Q` −Q`−1, Ψk, and Ψz
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Other concerns

Given an unbiased estimator for βk (i.e. E[β̂k] = βk), the quantity
(β̂k)2 will be a biased estimator for β2k, resulting in error

This will require a bias correction to be incorporated into the
estimator for each β2k
This, in turn, will require unbiased estimators for the moments of
the relevant Q` −Q`−1 and Ψk terms

If Var[β̂k] increases with k (as expected), how does one determine
the appropriate truncation level?

Mike Merritt Hybrid MLMC-PCE method for GSA 18 / 20



Ongoing work

Completed derivation of multi-level variances and covariances

Derivation of sample allocation strategy, targeting a given accuracy
for a set of GSA indices

Rigorous evaluation of the efficiency of PCE and MLMC-PCE
hybrid for GSA, considering the effects of dimension and regularity

Extension of this hybrid MLMC-PCE method to multi-fidelity
models and Approximate Control Variates5

5Gorodetsky et al., “A generalized approximate control variate framework for
multifidelity uncertainty quantification”.
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