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Introduction

Goal: Estimate Eθ[q(θ)] using Monte Carlo.

Procedure: For i.i.d. samples Θ = {θ1, . . . , θN},

X̄N =
1
N

N∑
i=1

q(θi )

EΘ[X̄N ] = Eθ[q(θ)]

VΘ[X̄N ] =
1
N

Vθ[q(θ)]
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Introduction

The Mean Squared Error (MSE) is

EΘ[(X̄N − E[q])2] = VΘ[X̄N ]︸ ︷︷ ︸
Variance

+ (E[X̄N ]− E[q])2︸ ︷︷ ︸
Bias2

=
1
N

Vθ[q(θ)] + 0

∝ 1/N.
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Introduction

Example: q(θ) = 4
3θ, where θ ∼ U(0, 1)
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Introduction

Common Problem: We can approximate q(θ), but not compute it directly

Examples:
q(θ) = y(T , θ) where y ′(t; θ) = f (t, y ; θ)

q(θ) = θTA−1θ where A is large/sparse

q(θ) =
∫
x f (x ; θ) dx

Define qk(θ) for k ∈ {0, 1, 2, . . . ,K}. The cost of evaluating qk(θ) and
the accuracy of qk(θ) both increase with k .
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Single Level Method

Example: f (x ; θ) = θ(1− x2), q(θ) =
∫ 1
−1 f (x ; θ) dx = 4

3θ

With 2k trapezoids, qk(θ) = 4
3θ(1− 1/4k)
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Single Level Method

Idea 1: To get MSE ε2, choose k so that (E[qk(θ)]− E[q(θ)])2︸ ︷︷ ︸
Bias2

≤ ε2/2
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Single Level Method

Idea 1: To get MSE ε2, choose k so that (E[qk(θ)]− E[q(θ)])2︸ ︷︷ ︸
Bias2

≤ ε2/2

Our trapezoid method problem: Cost ∝ 2k and Bias2 ∝ 2−4k

Thus: choose k so Ck ∝ 1/
√
ε

Need Nk ∝ 1/ε2 evaluations, since Var ∝ 1/N

Total cost: C = CkNk ∝ ε−
5
2

Alternately: ε2 ∝ C−
4
5

This is not asymptotically optimal! We want ε2 ∝ C−1
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Multi-Level Methods

Idea 2: Write qK (θ) as a telescoping series. Define

∆k =

{
q0 k = 0,
qk − qk−1 k ≥ 1,

get

E[qK (θ)] =
K∑

k=0

E[∆k(θ)]

When k is small, ∆k is cheap to evaluate
When k is large, ∆k has low variance

Can we combine these to our advantage??
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Cost Analysis

Ck : The cost of 1 evaluation of qk(θ) (increases with k)
Vk : The variance V[∆k(θ)] (decreases with k)
Nk : The number of evaluations at level k (how to choose?)

Total cost:
∑K

k=0 NkCk

Total variance:
∑K

k=0 N
−1
k Vk
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Cost Analysis

Optimizing, find

Nk = µ
√
Vk/Ck ,

µ = ε−2
k∑

k=0

√
Vk/Ck ,

yielding variance V = ε2 and total cost

C = ε−2

(
K∑

k=0

√
VkCk

)2

.

Important: does VkCk increase or decrease with k?
— Increase: finest level dominates the cost (bad)
— Decrease: coarsest level dominates the cost (good)
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Cost Analysis

Theorem (Giles 2008)

Suppose we have α, β, γ satisfying α ≥ 1
2 min(β, γ) and

1 |E[qK − q]| = O(2−αk),
2 Vk = O(2−βk),
3 Ck = O(2γk).

Then for any ε > 0 there is a multilevel estimator with MSE < ε2 and cost

C = O


ε−2 β > γ, (optimal)

ε−2(log ε)2 β = γ,

ε−2−(γ−β)/α β < γ.

If β > γ, we can attain the optimal rate!
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Cost Analysis

Applied to our trapezoid method problem:

qk(θ) =
4
3
θ(1− 1/4k)

1 |E[qk − q]| = 2
3 · 4

−k ∝ 2−2k (α = 2)
2 Vk = 4

3 · 4
−2k ∝ 2−4k (β = 4)

3 Ck = 2k + 1 ∝ 2k (γ = 1)

Since α ≥ 1
2 min(β, γ) and β > γ, we can attain the optimal rate.
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MLMC: Example

Try: Nk ∝
√
Vk/Ck ∝ 2−

5
2k

Sample k = 1, 2, 3, 4 in approximate ratio 181 : 32 : 6 : 1

Same limiting accuracy as the lowest level, but gets there faster

Devon Troester, Eric Hallman (NCSU) MLMC July 10, 2020 13 / 22



Summary

Exact measurement q(θ) is inaccessible/expensive

Multiple levels qk(θ) offer cost/bias tradeoff

Combine many coarse samples with a few fine samples

Optimal rate MSE ∝ C−1 often attainable

Not an unbiased method, but we can make the bias arbitrarily small
by adding more levels
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Summary(?)

But wait, there’s more!
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Unbiased Estimator

Idea 3: Write q(θ) as a telescoping series

E[q(θ)] =
∞∑
k=0

E[∆k(θ)]

Cannot directly estimate infinitely many terms
Use a probabilistic version!

Several variants; simplest is

Z =
∆N

pN

where N ≥ 0 is an integer-valued random variable.
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Unbiased Estimator

Justification for estimator Z : for any k , EN

[
I[N=k]

Pr[N=k]

]
= 1. Thus,

Eθ[q(θ)] =
∞∑
k=0

Eθ[∆k(θ)]

=
∞∑
k=0

Eθ[∆k(θ)]EN

[
I[N = k]

Pr[N = k]

]

= Eθ,N

[ ∞∑
k=0

∆k(θ)
I[N = k]

Pr[N = k]

]

= Eθ,N
[

∆N(θ)

pN

]
= Eθ,N [Z ].
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Unbiased Estimator

Theorem (Rhee/Glynn 2015)
The second moment of Z , if finite, is given by

E[Z 2] =
∞∑
k=0

E[∆k(θ)]2

pk

The expected cost of one evaluation of Z is approximately
∑∞

k=0 Ckpk .

Finding optimal {pk}∞k=0 is hard
Rough heuristic: set pk ∝ 2−rk , where 1 < r < 2α
Geometric distribution—pk is cheap to sample.

Devon Troester, Eric Hallman (NCSU) MLMC July 10, 2020 18 / 22



Unbiased Estimator

Implementation with r = 2.5:

. . . possible implementation issues, or choice of parameter? Needs closer
examination.

Devon Troester, Eric Hallman (NCSU) MLMC July 10, 2020 19 / 22



Unbiased Estimator

Implementation with r = 2.5:

. . . possible implementation issues, or choice of parameter? Needs closer
examination.

Devon Troester, Eric Hallman (NCSU) MLMC July 10, 2020 19 / 22



Future Considerations

How to choose the number of levels K and sample sizes Nk in
practice?

We could analyze our toy problem with pencil and paper, but real
problems are much more complicated.
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Conclusion

Thanks for listening!
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For Further Reading I

Michael B. Giles
Multilevel Monte Carlo Methods
https://people.maths.ox.ac.uk/gilesm/files/acta15.pdf

Chang-Han Rhee and Peter W. Glynn
Unbiased Estimation with Square Root Convergence for SDE Models
https://chrhee.github.io/papers/RheeGlynn13a.pdf

Michael B. Giles
MLMC for Nested Expectations
https://people.maths.ox.ac.uk/gilesm/files/SLOAN80-056.pdf
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