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Abstract

Consider a Gaussian random vector

X =

[
XM

XN

]
∼ N (µ,Σ) = N

([
µM

µN

]
,

[
ΣMM ΣMN

ΣNM ΣNN

])
,

where XM and XN denote subsets of entries of X and the mean and covariance matrix are parti-
tioned consistent with partitioning of X. It is well-known, or at least it should be, that marginals
of X are Gaussian, with XM ∼ N (µM,ΣMM) and XN ∼ N (µN,ΣNN). In this note, we provide three
proofs of this fact: one is done by computing the marginal density directly, and the other two are
short proofs that use further properties of multivariate Gaussian distribution.

1 Introduction

Consider a d-dimensional Gaussian random vector X ∼ N (µ,Σ). The covariance matrix Σ is
symmetric, and is assumed to positive definite throughout. Suppose we partition X according to

X =

[
XM

XN

]
, (1.1)

with XM ∈ Rm, where m < d, and XN ∈ Rn, n = d −m. With no loss of generality, we can take XM

to be the first m elements of X, and XN the rest. We partition the mean vector and the covariance
matrix accordingly [

XM

XN

]
∼ N

([
µM

µN

]
,

[
ΣMM ΣMN

ΣNM ΣNN

])
.

The probability density function (PDF) of X is

f(xM,xN) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2

[
xM − µM

xN − µN

]T [
ΣMM ΣMN

ΣNM ΣNN

]−1 [
xM − µM

xN − µN

])
.

The marginal PDF of XM, which defines the distribution law of XM, is

fM(xM) =

∫
Rn

f(xM,xN) dxN.

Below, we prove the following result:

Theorem 1.1. XM ∼ N (µM,ΣMM).

We provide a direct proof by computing the marginal PDF fM in Section 2. The argument pre-
sented there is of course standard and has been presented by many authors. The proof presented
in Section 2 follows in similar lines as the argument given in [2]. Then, in Section 3, we discuss al-
ternative, more elegant proofs, that rely on further properties of multivariate Gaussian distribution.
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2 The basic approach

We discuss some preliminaries, before stating the proof of Theorem 1.1.
Gaussian PDF. Consider an n-dimensional gaussian random variable Z ∼ N (µ,C). The covari-

ance matrix C is symmetric, and is assumed to be positive definite, in which case the distribution
law of Z admits a probability density function (PDF) given by

f(z) =
1

(2π)n/2|C|1/2
exp

(
−1

2
(z − µ)TC−1(z − µ)

)
, z ∈ Rn.

By definition, the PDF must integrate to one; thus, in particular∫
Rn

exp

(
−1

2
(z − µ)TC−1(z − µ)

)
dz = (2π)n/2|C|1/2. (2.1)

Completing the Square. When manipulating multivariate Gaussians, the basic idea of complet-
ing a square comes up often. This is recorded in the following lemma:

Lemma 2.1. Let A ∈ Rn×n be symmetric positive definite and let z, b, and c be in Rn. Then,

1

2
zTAz + bTz + c =

1

2

(
z + A−1b

)T
A
(
z + A−1b

)
+ c− 1

2
bTA−1b. (2.2)

Proof. This is seen by direct calculation.

1

2
zTAz + bTz + c =

1

2
zTAz +

1

2
bTz +

1

2
zT b+ c+

(
1

2
bTA−1b− 1

2
bTA−1b

)
=

1

2
bTz +

1

2
bTA−1b+

1

2
zTAz +

1

2
zT b+ c− 1

2
bTA−1b

=
1

2

(
bTA−1A + zTA

) (
z + A−1b

)
+ c− 1

2
bTA−1b

=
1

2

(
z + A−1b

)T
A
(
z + A−1b

)
+ c− 1

2
bTA−1b.

Proof 1 of Theorem 1.1. Consider the marginal PDF of XM

f(xM) =

∫
Rn

f(xM,xN) dxN

=
1

(2π)d/2|Σ|1/2

∫
Rn

exp

(
−1

2

[
xM − µM

xN − µN

]T [
ΣMM ΣMN

ΣNM ΣNN

]−1 [
xM − µM

xN − µN

])
dxN.

(2.3)

Let
Q = (2π)d/2|Σ|1/2,

and note that that by the formula for the determinant of a block matrix [6],

|Σ| = |ΣMM||ΣNN −ΣNMΣ−1
MMΣMN|. (2.4)

For convenience, we introduce the notation

S =

[
SMM SMN

SNM SNN

]
= Σ−1.

The blocks in the definition of S can be computed using the formula for inverse of a block matrix [6],
but for the time being, we will not need their explicit expression. Expanding (2.3) we obtain

f(xM) =
1

Q

∫
Rn

exp

(
−
[

1

2
(xM − µM)TSMM(xM − µM) +

1

2
(xN − µN)TSNM(xM − µM)+

1

2
(xM − µM)TSMN(xN − µN) +

1

2
(xN − µN)TSNN(xN − µN)

])
dxN.

Completing the square, using the formula (2.2), with

z = xN − µN, A = SNN, b = SNM(xM − µM), c =
1

2
(xM − µM)TSMM(xM − µM),

2
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we obtain

f(xM) =
1

Q

∫
Rn

exp

(
−
[

1

2
((xN − µN) + S−1

NNSNM(xM − µM))TSNN((xN − µN) + S−1
NNSNM(xM − µM))

+
1

2
(xM − µM)TSMM(xM − µM)− 1

2
(xM − µM)TSMNS−1

NNSNM(xM − µM)

])
dxN.

Factoring out the terms that do not contain xN we obtain

f(xM) =
1

Q
exp

(
1

2
(xM − µM)TSMM(xM − µM)− 1

2
(xM − µM)TSMNS−1

NNSNM(xM − µM)

)
∫
Rn

exp

(
−
[

1

2
((xN − µN) + S−1

NNSNM(xM − µM))TSNN((xN − µN) + S−1
NNSNM(xM − µM))

])
dxN.

For clarity, we introduce that notation, m = µN − S−1
NNSNM(xM − µM), and note that the integral in

the above expression can be written as∫
Rn

exp

(
− 1

2
(y −m)TSNN(y −m)

)
dy = (2π)n/2|S−1

NN|
1/2,

where the final equality follows from (2.1). Now we are left with

f(xM) =
1

Q
(2π)n/2|S−1

NN|
1/2 exp

(
1

2
(xM − µM)T (SMM − SMNS−1

NNSNM)(xM − µM)

)
. (2.5)

Note that the exponential term matches that of a Gaussian distribution with mean µM and covariance
matrix (SMM−SMNS−1

NNSNM)−1. It remains to check that this covariance matrix equals ΣMM and that
we have the correct normalization constant. We proceed by examining the inverse of the block
matrix S:[

ΣMM ΣMN

ΣNM ΣNN

]
=

[
SMM SMN

SNM SNN

]−1

=

[
(SMM − SMNS−1

NNSNM)−1 −(SMM − SMNS−1
NNSNM)−1SMNS−1

NN

−S−1
NNSNM(SMM − SMNS−1

NNSNM)−1 (SNN − SNMS−1
MMSMN)−1

]
.

We immediately see that
ΣMM = (SMM − SMNS−1

NNSNM)−1. (2.6)

Moreover, the normalization constant in front of (2.5) simplifies to

1

Q
(2π)n/2|S−1

NN|
1/2 = (2π)−d/2|Σ|−1/2(2π)n/2|S−1

NN|
1/2

= (2π)−m/2|ΣMM|−1/2|ΣNN −ΣNMΣ−1
MMΣMN|−1/2|ΣNN −ΣNMΣ−1

MMΣMN|1/2

= (2π)−m/2|ΣMM|−1/2.

(2.7)

In the penultimate step we used (2.4) and also the inversion formula for the block form of Σ in (2.3).
Combining (2.5), (2.6), (2.7), concludes the proof:

f(xM) = (2π)−m/2|ΣMM|−1/2 exp

(
1

2
(xM − µM)TΣ−1

MM(xM − µM)

)
.

�

3 Alternative arguments

The argument presented above regarding the marginals of a Gaussian is basic in that it uses only
the definition of the marginal and the definition of Gaussian PDFs. As shown below, we can also
derive the distribution law of XM using further properties of multivariate Gaussian distribution.

Using affine transformation of a Gaussian random vector. Let’s recall the following result:
let X be a d-dimensional Gaussian random vector with law N (µ,Σ), and let A ∈ Rk×d and c ∈ Rk.
Then, Y = AX + c is also a Gaussian and

Y ∼ N (Aµ+ c,AΣAT ). (3.1)

See e.g., [4, p. 121] for a proof. This formula can be used to give a very short proof of Theorem 1.1.
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Proof 2 of Theorem 1.1. Consider the Gaussian random vectorX as partitioned in (1.1), and note
that XM = AX, with A =

[
Im×m 0m×(d−m)

]
. Therefore, XM ∼ N (Aµ,AΣAT ) = N (µM,ΣMM). �

This is a typical way of proving the result regarding the marginals of a Gaussian discussed herein;
see also [3, p. 178], where a similar proof is presented.

Using characteristic functions. Yet another quick proof of the result on the marginals of a
Gaussian can be done using characteristic functions; this is the approach used for instance in [7].
Recall that for a d-dimensional random vector X, its characteristic function is given by

ϕX(ξ) = E
(

exp
(
iξTX

))
, ξ ∈ Rd.

Here E denotes expectation and i is the imaginary unit. The characteristic function of a random
variable uniquely characterizes its distribution law [1, 7].

It is straightforward to note that, for any d-dimensional random vector X, partitioned according

to
[
XT

M XT
N

]T
, with XM = (X1, . . . , Xm)T and XN = (Xm+1, . . . , Xd)T ,

ϕXM(ξM) = ϕX

([
ξM

0

])
, ξM ∈ Rm.

Let X be a d-dimensional random vector; it is well-known (see e.g., [5, 7]) that X ∼ N (µ,Σ) if and
only if,

ϕX(ξ) = exp

(
iξTµ− 1

2
ξTΣξ

)
, ξ ∈ Rd.

Proof 3 of Theorem 1.1. For a d-dimensional Gaussian random vector X partitioned according
to (1.1),

ϕXM(ξM) = ϕX

([
ξM

0

])
= exp

(
iξTMµM −

1

2
ξTMΣMMξM

)
, ξM ∈ Rm,

from which it immediately follows that X ∼ N (xM,ΣMM). �
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