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Abstract

We illustrate adjoint based gradient and Hessian computation for simple PDE-based
model inverse problem. A formal Lagrange approach is used to derive the adjoint
based expressions for gradient and Hessian.

1 Introduction

Adjoint-based gradient computation is essential for infinite-dimensional PDE-constrained
optimization problems. Examples include PDE-based inverse problems, or control of
systems governed by PDEs. The purpose of this note is to provide a quick summary of
adjoint based gradient and Hessian computation within the context some simple exam-
ples. The techniques presented here are standard. See for instance [2]. The approach
for computing the Hessian is adapted from [1]. We consider two examples in this note: a
coefficient inversion problem governed by an elliptic PDE, and a source term inversion
problem governed by the heat equation. The former is a nonlinear inverse problem,
due to the nonlinearity of the parameter-to-observable map, and the latter is a linear
inverse problem.

2 Coefficient inversion in an elliptic PDE

We consider the following inverse problem.

min
m
J (m) :=

1

2

∫
Ω

(u− ud)2 dx +
γ

2

∫
Ω

|∇m|2 dx,

where u solves the PDE
−∇ · (em∇u) = f in Ω,

u = 0 on ∂Ω.
(2.1)

Here γ > 0 is a regularization parameter. The functional J is defined for m ∈ H1(Ω).
Because of the homogeneous Dirichlet boundary conditions, the solution space of the
state equation is V = H1

0 (Ω). The weak form of (2.1) is as follows: find u ∈ V such that∫
Ω

em∇u · ∇v dx =

∫
Ω

fv dx, for all v ∈ V.

Gradient computation. We seek to describe the action of the directional derivative
of J at a given m ∈ H1(Ω) on a direction m̃ ∈ H1(Ω). We denote this by g(m)(m̃).
Generally, for a functional Π(u), we use the notation Πu(u)(ũ) to denote the variational
derivative of Π at u and in the direction ũ:

Πu(u)(ũ) :=
d

dε
Π(u+ εũ)

∣∣∣
ε=0

.
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Adjoint based gradient computation

Following a formal Lagrange approach, we consider the Lagrangian:

L(u,m, p) = J (m) +

∫
Ω

em∇u · ∇p dx−
∫

Ω

fp dx. (2.2)

We have, for a given m ∈ H1(Ω)

g(m)(m̃) = Lm(u,m, p)(m̃), m̃ ∈ H1(Ω), (2.3a)

where u and p, respectively, satisfy:

Lp(u,m, p)(p̃) = 0, ∀p̃ ∈ V,
Lu(u,m, p)(ũ) = 0, ∀ũ ∈ V.

It is straightforward to compute

Lp(u,m, p)(p̃) =

∫
Ω

em∇u · ∇p̃ dx−
∫

Ω

fp̃ dx,

Lu(u,m, p)(ũ) =

∫
Ω

(u− ud)ũ dx +

∫
Ω

em∇p · ∇ũ dx,

Lm(u,m, p)(m̃) = γ

∫
Ω

∇m · ∇m̃ dx +

∫
Ω

(m̃em)∇u · ∇p dx.

(2.4)

Note that letting Lp(u,m, p)(p̃) equal to zero, for every p̃ ∈ V , recovers the weak form
of the state equation. Letting Lu(u,m, p)(ũ) vanish for every ũ ∈ V , leads to the weak
form of the adjoint equation.

To summarize, for computing g(m)(m̃), we proceed as follows:

1. Given m, solve the state equation: find u ∈ V such that∫
Ω

em∇u · ∇p̃ dx−
∫

Ω

fp̃ dx = 0, for all p̃ ∈ V. (2.5)

2. Given m and u, solve the adjoint equation: find p ∈ V such that∫
Ω

em∇p · ∇ũ dx = −
∫

Ω

(u− ud)ũ dx for all ũ ∈ V. (2.6)

3. Evaluate the gradient:

g(m)(m̃) = γ

∫
Ω

∇m · ∇m̃ dx +

∫
Ω

(m̃em)∇u · ∇p dx. (2.7)

It is also worth noting the strong form of the adjoint equation. Before doing so, we
recall the following Green’s identity, which is a multidimensional integration-by-parts
formula: for u, v ∈ H1(Ω),∫

Ω

k∇u · ∇v dx = −
∫

Ω

v∇ · (k∇u) dx +

∫
∂Ω

v (k∇u · n) ds.

Now, consider (2.6), using Green’s identity and the fact that ũ ∈ V = H1
0 (Ω), we have∫

Ω

[−∇ · (em∇p) + (u− ud)] ũ dx = 0, for all ũ ∈ V.

Using this, and p ∈ V , we get the strong form of the adjoint equation:

−∇ · (em∇p) = −(u− ud) in Ω,

p = 0 on ∂Ω.
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Adjoint based gradient computation

Hessian computation. Computing the action of the Hessian, in a given direction,
can also be facilitated through an adjoint based formulation. Note that for fixed m and
m̂ in H1(Ω), the directional derivative is given by

g(m)(m̂) = γ

∫
Ω

∇m · ∇m̂ dx +

∫
Ω

(m̂em)∇u · ∇p dx,

where
−∇ · (em∇u) = f in Ω,

u = 0 on ∂Ω.
(2.8)

And
−∇ · (em∇p) = −(u− ud) in Ω,

p = 0 on ∂Ω.
(2.9)

Notice that (2.8) is the strong form of the state equation and (2.9) is the strong form
of adjoint equation derived above. We focus on differentiating, g(m)(m̂) viewed as a
PDE-based implicitly defined functional. Consider the (meta-) Lagrangian:

LH(u,m, p, û, p̂; m̂) = γ

∫
Ω

∇m · ∇m̂ dx +

∫
Ω

m̂em∇u · ∇p dx +

∫
Ω

em∇u · ∇p̂ dx

−
∫

Ω

fp̂ dx +

∫
Ω

(u− ud)û dx +

∫
Ω

em∇p · ∇û dx.
(2.10)

Letting LH(p̂)(p̃) = 0 for all p̃ yields the state equation and LH(û)(ũ) = 0 for all ũ
yields the adjoint equation. Note that for notational convenience we have suppressed
the arguments (u,m, p, û, p̂; m̂) of LH . The action of the Hessian, H on m̂ ∈ H1(Ω), in a
direction m̃ ∈ H1(Ω) is given by

H(m)(m̂, m̃) = LHm(m̃)

=

∫
Ω

m̃em∇u · ∇p̂ dx +

∫
Ω

m̃em∇p · ∇û dx +

∫
Ω

m̂m̃em∇u · ∇p+ γ

∫
Ω

∇m̃ · ∇m̂ dx,

where û and p̂ satisfy

LHp (p̃) =

∫
Ω

m̂em∇u · ∇p̃ dx +

∫
Ω

em∇p̃ · ∇û dx = 0, ∀p̃ ∈ V, (2.11)

and

LHu (ũ) =

∫
Ω

m̂em∇ũ · ∇p dx +

∫
Ω

em∇ũ · ∇p̂ dx +

∫
Ω

ũû dx = 0, ũ ∈ V. (2.12)

We point out that (2.11) and (2.12) are the weak forms of the so called incremental
state and incremental adjoint equations. Their strong forms are easily found to be

−∇ · (em∇û) = ∇ · (m̂em∇u) in Ω,

û = 0 in ∂Ω,
(2.13)

and
∇ · (em∇p̂) = −û−∇ · (m̂em∇p) in Ω,

p̂ = 0 in ∂Ω.
(2.14)

We can also write down the strong form of the Hessian application

H(m)(m̂) = em∇u · ∇p̂+ em∇û · ∇p+ m̂em∇u · ∇p− γ∆m̂.
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Adjoint based gradient computation

3 An inverse problem governed by a time-dependent PDE

Here we illustrate the basic ideas of adjoint-based gradient and Hessian computation
within the context of a simple linear inverse problem governed by the heat equation.
The model problem here concerns inversion of a coefficient function in the source term.

We consider the following inverse problem:

min
m
J (m) :=

1

2

∫
Ω

(
u(T,x)− ud(x)

)2
dx +

α

2

∫ T

0

m(t)2 dt (3.1a)

where
ut − κ∆u = f(x)m(t) in Ω× (0, T ),

u(0,x) = 0 in Ω,

κ∇u · n = 0 on ∂Ω× (0, T ).

(3.1b)

This assumes we have measurements of the temperature at the final time, using which
we want to estimate the coefficient function in the right hand side. Note that as in the
previous example, this problem formulation is an idealization, and in practice temprea-
ture measurements will be available at discrete points in the domain. Below, we build
the initial condition u(0,x) = 0 in the test function space for the forward equation.

Gradient computation. As before, we follow a Lagrange multiplier approach for
computing the gradient of J . Consider the Lagrangian,

L(u,m, p) =
1

2

∫
Ω

(u(T, ·)− ud)2 dx +
α

2

∫ T

0

m2 dt

+

∫ T

0

∫
Ω

utpdxdt+

∫ T

0

∫
Ω

κ∇u · ∇p dxdt−
∫ T

0

∫
Ω

f(x)m(t)p dxdt.

Note that p = p(t,x) is the adjoint variable.
Setting Lp(p̃) = 0, for every p̃, we recover the weak form of the state equation. The

adjoint equation is derived by considering Lu(ũ) = 0, for every ũ. This translates to∫
Ω

(
u(T, ·)− ud)

)
ũ(T, ·) dx +

∫ T

0

∫
Ω

ũtpdxdt+

∫ T

0

∫
Ω

κ∇ũ · ∇p dxdt = 0,

for every ũ. Performing integration by parts in time and space, we have∫
Ω

(
u(T, ·)− ud)

)
ũ(T, ·) dx +

∫
Ω

p(T, ·)ũ(T, ·) dx−
∫ T

0

∫
Ω

ptũdxdt

−
∫ T

0

∫
Ω

(κ∆p)ũ dxdt+

∫ T

0

∫
∂Ω

κ(∇p · n)ũ dxdt = 0,

for all ũ. From this we obtain the strong form of the adjoint equation:

−pt − κ∆p = 0 in Ω× (0, T ),

p(T,x) = −(u(T, ·)− ud)) in Ω,

κ∇p · n = 0 on ∂Ω× (0, T ).

As for the gradient,

g(m)(m̃) = Lm(m̃) = α

∫ T

0

m(t)m̃(t) dt−
∫ T

0

∫
Ω

f(x)m̃(t)p(t,x) dxdt.

In strong form,

g(m) = αm−
∫

Ω

f(x)p(t,x) dx.
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Adjoint based gradient computation

Hessian computation. As done for the elliptic inverse problem, we consider differ-
entiating through the directional derivative g(m)(m̂), as constrained by the solutions of
the forward and adjoint equations. To this end, we define the (meta-) Lagrangian:

LH(u,m, p, û, p̂; m̂) = α

∫
Ω

m(t)m̂(t) dt−
∫ T

0

∫
Ω

f(x)m̂(t)p(t,x) dxdt

+

∫ T

0

∫
Ω

utp̂dxdt+

∫ T

0

∫
Ω

κ∇u · ∇p̂ dxdt−
∫ T

0

∫
Ω

f(x)m(t)p̂ dxdt

+

∫
Ω

(
u(T, ·)− ud)

)
û(T, ·) dx−

∫ T

0

∫
Ω

ptûdxdt+

∫ T

0

∫
Ω

κ∇û · ∇p dxdt.

Letting variations of LH with respect to p̂ and û vanish recovers the forward and adjoint
equations. We can derive the incremental state and adjoint equations by setting varia-
tions of LH with respect to p and u equal to zero (along all test functions). This results
in the incremental state and adjoint equations:

ût − κ∆û = f(x)m̂(t) in Ω× (0, T ),

û(0,x) = 0 in Ω,

κ∇û · n = 0 on ∂Ω× (0, T ),

(incremental state equation)

and

−p̂t − κ∆p̂ = 0 in Ω× (0, T ),

p̂(T,x) = −û(T,x) in Ω,

κ∇p̂ · n = 0 on ∂Ω× (0, T ).

(incremental adjoint equation)

The Hessian apply H(m)(m̂, m̃) at m ∈ L2(Ω) on m̂, along test function m̃ is

H(m)(m̂, m̃) = LHm(m̃) = α

∫
Ω

m̂(t)m̃(t) dt−
∫ T

0

∫
Ω

f(x)m̃(t)p̂ dxdt.

In strong form,

H(m)m̂ = αm̂−
∫

Ω

f(x)p̂(·,x) dx.
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